Skip to main content
Log in

Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) employs a gold (Au) thin film (ca. 50 nm in thickness) chip to generate a surface plasmonic wave (SPW) for in situ monitoring of the interface/surface, which makes it intrinsically compatible with electrochemistry for combined electrochemical surface plasmon resonance (EC-SPR) investigations. However, conventional SPR Au chips suffers from a high background signal, narrow electrochemical window, and limited electrochemical stability. Presented in this work is a novel SPR chip composed of the Au/long-chain alkane thiol self-assembled monolayer/single-layer graphene (Au/SAM/G) sandwich architecture to address these problems. On this chip, the single-layer graphene serves as a working electrode for electrochemical measurement, and the underlying Au film serves as the SPW support for SPR monitoring; the sandwiched thiol monolayer enables the electrical separation of the graphene and Au film to protect the Au film from electrochemical polarization. Our experiment indicates that the electrochemical window of such a chip extends beyond the hydrogen/oxygen evolution reaction potential on Au with significantly improved electrochemical stability and suppressed background signal. Moreover, its intrinsic SPR sensitivity is completely reserved even compared to that of the conventional SPR Au chip. This Au/SAM/G chip may offer a valuable solution to the EC-SPR investigations in harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu C, Hu F, Yang W, Xu J, Chen Y. A critical review of advances in surface plasmon resonance imaging sensitivity. TrAC Trends Anal Chem. 2017;97:354–62.

    Article  CAS  Google Scholar 

  2. Su YW, Wang W. Surface plasmon resonance sensing: from purified biomolecules to intact cells. Anal Bioanal Chem. 2018;410(17):3943–51.

    Article  CAS  PubMed  Google Scholar 

  3. Liu C, Wang X, Xu J, Chen Y. Chemical strategy to stepwise amplification of signals in surface plasmon resonance imaging detection of saccharides and glycoconjugates. Anal Chem. 2016;88(20):10011–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hinman SS, McKeating KS, Cheng Q. Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem. 2018;90(1):19–39.

    Article  CAS  PubMed  Google Scholar 

  5. Yao X, Yang ML, Wang Y, Hu Z. Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance. Sensors Actuators B Chem. 2007;122(2):351–6.

    Article  CAS  Google Scholar 

  6. Chen D, Zhao L, Hu W. Protein immobilization and fluorescence quenching on polydopamine thin films. J Colloid Interface Sci. 2016;477:123–30.

    Article  CAS  PubMed  Google Scholar 

  7. Hu W, Chen H, Zhang H, He G, Li X, Zhang X, et al. Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. J Colloid Interface Sci. 2014;431:71–6.

    Article  CAS  PubMed  Google Scholar 

  8. Hu W, He G, Zhang H, Wu X, Li J, Zhao Z, et al. Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem. 2014;86(9):4488–93.

    Article  CAS  PubMed  Google Scholar 

  9. Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, et al. Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun. 2014;50:2133–5.

    Article  CAS  Google Scholar 

  10. Hu W, Liu Y, Lu Z, Li CM. Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] brush substrate for sensitive surface plasmon resonance imaging protein arrays. Adv Funct Mater. 2010;20(20):3497–503.

    Article  CAS  Google Scholar 

  11. Jung I, Ih S, Yoo H, Hong S, Park S. Fourier transform surface plasmon resonance of nanodisks embedded in magnetic nanorods. Nano Lett. 2018;18(3):1984–92.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang D, Jiang Y, Li Z, Liu T, Wo X, Fang Y, et al. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J Am Chem Soc. 2017;139(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  13. Chen D, Mei Y, Hu W, Li CM. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta. 2018;182:470–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chen D, Hu W. In situ investigation of electrochemically mediated surface-initiated atom transfer radical polymerization by electrochemical surface plasmon resonance. Anal Chem. 2017;89(8):4355–8.

    Article  CAS  PubMed  Google Scholar 

  15. Verma R, Gupta BD, Jha R. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors Actuators B Chem. 2011;160(1):623–31.

    Article  CAS  Google Scholar 

  16. Singh M, Holzinger M, Tabrizian M, Winters S, Berner NC, Cosnier S, et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc. 2015;137(8):2800–3.

    Article  CAS  PubMed  Google Scholar 

  17. Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, et al. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew Chem Int Ed. 2012;51(23):5629–33.

    Article  CAS  Google Scholar 

  18. Wang J, Wang F, Zou X, Xu Z, Dong S. Surface plasmon resonance and electrochemistry for detection of small molecules using catalyzed deposition of metal ions on gold substrate. Electrochem Commun. 2007;9(2):343–7.

    Article  CAS  Google Scholar 

  19. Linman MJ, Abbas A, Roberts CC, Cheng Q. Etched glass microarrays with differential resonance for enhanced contrast and sensitivity of surface plasmon resonance imaging analysis. Anal Chem. 2011;83(15):5936–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbas A, Linman MJ, Cheng Q. Patterned resonance plasmonic microarrays for high-performance SPR imaging. Anal Chem. 2011;83(8):3147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sexton BA, Feltis BN, Davis TJ. Characterisation of gold surface plasmon resonance sensor substrates. Sens Actuators, A. 2008;141(2):471–5.

    Article  CAS  Google Scholar 

  22. Szunerits S, Coffinier Y, Janel S, Boukherroub R. Stability of the gold/silica thin film interface: electrochemical and surface plasmon resonance studies. Langmuir. 2006;22(25):10716–22.

    Article  CAS  PubMed  Google Scholar 

  23. Hoogvliet JC, Bennekom WPV. Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochim Acta. 2001;47(4):599–611.

    Article  CAS  Google Scholar 

  24. Ghorbanpour M, Falamaki C. A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment. J Nanostruct Chem. 2013;3(1):66.

    Article  Google Scholar 

  25. Chang CC, Chiu NF, Lin DS, Yu CS, Liang YH, Lin CW. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem. 2010;82(4):1207–12.

    Article  CAS  PubMed  Google Scholar 

  26. Phillips KS, Wilkop T, Wu JJ, Alkaysi RO, Cheng Q. Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. J Am Chem Soc. 2006;128(30):9590–1.

    Article  CAS  PubMed  Google Scholar 

  27. Phillips KS, Han JH, Martinez M, Wang Z, Carter D, Cheng Q. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Anal Chem. 2006;78(2):596–603.

    Article  CAS  PubMed  Google Scholar 

  28. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN. Electrochemical studies of the oxidation pathways of catecholamines. J Am Chem Soc. 1967;89(2):447–50.

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Liu J, Lu Y, Zhu L, Li C, Hu L, et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens Bioelectron. 2018;117:32–9.

    Article  CAS  PubMed  Google Scholar 

  30. Meneghello A, Sonato A, Ruffato G, Zacco G, Romanato F. A novel high sensitive surface plasmon resonance legionella pneumophila sensing platform. Sensors Actuators B Chem. 2017;250:351–5.

    Article  CAS  Google Scholar 

  31. Hu X, Zeng M, Long Y, Liu J, Zhu Y, Zou K, et al. Phase conjugated and transparent wavelength conversions of nyquist 16-QAM signals employing a single-layer graphene coated fiber device. Sci Rep. 2016;6:22379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Shan X, Wang H, Wang S, Tao N. Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc. 2017;139(4):1376–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wei W, Nong J, Zhu Y, Zhang G, Wang N, Luo S, et al. Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics. 2018;13(2):483–91.

    Article  CAS  Google Scholar 

  34. Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, et al. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem. 2014;86(22):11211–6.

    Article  CAS  PubMed  Google Scholar 

  35. Novoselov KS, Fal'Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nat. 2012;490:192–200.

    Article  CAS  Google Scholar 

  36. Pothipor C, Lertvachirapaiboon C, Shinbo K, Kato K, Kaneko F, Ounnunkad K, et al. Development of graphene oxide/poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) thin film-based electrochemical surface plasmon resonance immunosensor for detection of human immunoglobulin G. Jpn J Appl Phys. 2018;57.

  37. Wei W, Nong J, Mei Y, Zhong C, Lan G, Hu W. Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay. Sensors Actuators B Chem. 2018;273:1548–55.

    Article  CAS  Google Scholar 

  38. Hu W, Lu Z, Liu Y, Li CM. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection. Langmuir. 2010;26(11):8386–91.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan L, Tao N, Wang W. Plasmonic imaging of electrochemical impedance. Ann Rev Anal Chem. 2017;10:183–200.

    Article  Google Scholar 

  40. Zhai P, Guo J, Xiang J, Zhou F. Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films. J Phys Chem C. 2007;111(2):981–6.

    Article  CAS  Google Scholar 

  41. Liang CP, Gong HR. Fundamental influence of hydrogen on various properties of α-titanium. Int J Hydrog Energy. 2010;35(8):3812–6.

    Article  CAS  Google Scholar 

  42. Teter DF, Robertson IM, Birnbaum HK. The effects of hydrogen on the deformation and fracture of β-titanium. Acta Mater. 2001;49(20):4313–23.

    Article  CAS  Google Scholar 

  43. Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew Chem. 2016;55(9):3054–7.

    Article  CAS  Google Scholar 

  44. Briant CL, Wang ZF, Chollocoop N. Hydrogen embrittlement of commercial purity titanium. Corros Sci. 2002;44(8):1875–88.

    Article  CAS  Google Scholar 

  45. Kelly RG, Frost AJ, Shahrabi T, Newman RC. Brittle fracture of an Au/Ag alloy induced by a surface film. Metall Trans A. 1991;22(2):531–41.

    Article  Google Scholar 

  46. Szunerits S, Castel X, Boukherroub R. Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity. J Phys Chem C. 2008;112(40):15813–7.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (21273173, 61675037, 61405021), the Natural Science Foundation Project of CQ CSTC (cstc2016jcyjA0493, cstc2017jcyjBX0048), and the Fundamental Research Funds for the Central Universities (XDJK2018B001, 2018CDQYGD0022, cqu2018CDHB1B03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Weihua Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Zhong, C., Li, L. et al. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study. Anal Bioanal Chem 411, 4577–4585 (2019). https://doi.org/10.1007/s00216-018-1456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1456-1

Keywords

Navigation