Analytical and Bioanalytical Chemistry

, Volume 411, Issue 1, pp 37–61 | Cite as

Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials

  • Feng Shao
  • Renato ZenobiEmail author
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


Two-dimensional (2D) materials have been one of the most extensively studied classes of modern materials, due to their astonishing chemical, optical, electronic, and mechanical properties, which are different from their bulk counterparts. The edges, grain boundaries, local strain, chemical bonding, molecular orientation, and the presence of nanodefects in these 2D monolayers (MLs) will strongly affect their properties. Currently, it is still challenging to investigate such atomically thin 2D monolayers with nanoscale spatial resolution, especially in a label-free and non-destructive way. Tip-enhanced Raman spectroscopy (TERS), which combines the merits of both scanning probe microscopy (SPM) and Raman spectroscopy, has become a powerful analytical technique for studying 2D monolayers, because it allows very high-resolution and high-sensitivity local spectroscopic investigation and imaging and also provides rich chemical information. This review provides a summary of methods to study 2D monolayers and an overview of TERS, followed by an introduction to the current state-of-the-art and theoretical understanding the spatial resolution in TERS experiments. Surface selection rules are also discussed. We then focus on the capabilities and potential of TERS for nanoscale chemical imaging of 2D materials, such as graphene, transition metal dichalcogenides (TMDCs), and 2D polymers. We predict that TERS will become widely accepted and used as a versatile imaging tool for chemical investigation of 2D materials at the nanoscale.

Graphical abstract


Tip-enhanced Raman spectroscopy Nanoscale chemical imaging Surface selection rules Two-dimensional polymers Monolayers 



The authors gratefully acknowledge Dr. Guillaume Goubert for the helpful discussions, ETH Zurich for the financial support, and the European Research Council (ERC) for the generous support of this research via an Advanced Grant (#741431-2DNanoSpec). F.S. thanks the Chinese Scholarship Council for a Ph.D. student fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7(4):2898–926.PubMedGoogle Scholar
  2. 2.
    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale. 2011;3(1):20–30.PubMedGoogle Scholar
  3. 3.
    Zeng H, Cui X. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev. 2015;44(9):2629–42.PubMedGoogle Scholar
  4. 4.
    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501.PubMedGoogle Scholar
  5. 5.
    Gao LB, Ni GX, Liu YP, Liu B, Neto AHC, Loh KP. Face-to-face transfer of wafer-scale graphene films. Nature. 2014;505(7482):190–4.PubMedGoogle Scholar
  6. 6.
    Lee S-M, Kim J-H, Ahn J-H. Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater Today. 2015;18(6):336–44.Google Scholar
  7. 7.
    Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano. 2011;5(9):6916–24.PubMedGoogle Scholar
  8. 8.
    Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. van der Waals heterostructures and devices. Nat Rev Mater. 2016;1:16042.Google Scholar
  9. 9.
    Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5:263.PubMedGoogle Scholar
  10. 10.
    Schlüter AD, Payamyar P, Öttinger HC. How the world changes by going from one- to two-dimensional polymers in solution. Macromol Rapid Commun. 2016;37(20):1638–50.PubMedGoogle Scholar
  11. 11.
    Payamyar P, King BT, Ottinger HC, Schluter AD. Two-dimensional polymers: concepts and perspectives. Chem Commun. 2016;52(1):18–34.Google Scholar
  12. 12.
    Dai W, Shao F, Szczerbiński J, McCaffrey R, Zenobi R, Jin Y, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew Chem Int Ed. 2016;55(1):213–7.Google Scholar
  13. 13.
    Sakamoto J, van Heijst J, Lukin O, Schlüter AD. Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Ed. 2009;48(6):1030–69.Google Scholar
  14. 14.
    Murray DJ, Patterson DD, Payamyar P, Bhola R, Song W, Lackinger M, et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J Am Chem Soc. 2015;137(10):3450–3.PubMedGoogle Scholar
  15. 15.
    Liu W, Luo X, Bao Y, Liu YP, Ning G-H, Abdelwahab I, et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat Chem. 2017;9:563–70.PubMedGoogle Scholar
  16. 16.
    Zhao Y, Bernitzky RHM, Kory MJ, Hofer G, Hofkens J, Schlüter AD. Decorating the edges of a 2D polymer with a fluorescence label. J Am Chem Soc. 2016;138(28):8976–81.PubMedGoogle Scholar
  17. 17.
    Sahabudeen H, Qi H, Glatz BA, Tranca D, Dong R, Hou Y, et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat Commun. 2016;7:13461.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Boott CE, Nazemi A, Manners I. Synthetic covalent and non-covalent 2D materials. Angew Chem Int Ed. 2015;54(47):13876–94.Google Scholar
  19. 19.
    Ascherl L, Sick T, Margraf JT, Lapidus SH, Calik M, Hettstedt C, et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat Chem. 2016;8(4):310–6.Google Scholar
  20. 20.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103–70.PubMedGoogle Scholar
  21. 21.
    van Spriel AB, van den Bogaart G, Cambi A. Editorial: membrane domains as new drug targets. Front Physiol. 2015;6(172):2015.Google Scholar
  22. 22.
    Gennis RB. Biomembranes : molecular structure and function. New York City: Springer-Verlag; 2013.Google Scholar
  23. 23.
    Wang T, Ebeling D, Yang J, Du C, Chi L, Fuchs H, et al. Weak epitaxy growth of copper hexadecafluorophthalocyanine (F16CuPc) on p-sexiphenyl monolayer film. J Phys Chem B. 2009;113(8):2333–7.PubMedGoogle Scholar
  24. 24.
    Christian AB, Daniel JM. High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys. 2011;74(8):086601.Google Scholar
  25. 25.
    Zan R, Ramasse QM, Jalil R, Bangert U. Atomic Structure of graphene and h-BN layers and their interactions with metals. In: Aliofkhazraei M, editor. Advances in graphene science. InTech; 2013: 1–30.Google Scholar
  26. 26.
    Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469(7330):389–92.PubMedGoogle Scholar
  27. 27.
    Matei DG, Muzik H, Gölzhäuser A, Turchanin A. Structural investigation of 1,1′-biphenyl-4-thiol self-assembled monolayers on au(111) by scanning tunneling microscopy and low-energy electron diffraction. Langmuir. 2012;28(39):13905–11.PubMedGoogle Scholar
  28. 28.
    Mashaghi A, Mashaghi S, Reviakine I, Heeren RM, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev. 2014;43:887–900.PubMedGoogle Scholar
  29. 29.
    Dietrich PM, Graf N, Gross T, Lippitz A, Krakert S, Schüpbach B, et al. Amine species on self-assembled monolayers of ω-aminothiolates on gold as identified by XPS and NEXAFS spectroscopy. Surf Interface Anal. 2010;42(6–7):1184–7.Google Scholar
  30. 30.
    Kraft ML, Weber PK, Longo ML, Hutcheon ID, Boxer SG. Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science. 2006;313(5795):1948.PubMedGoogle Scholar
  31. 31.
    Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Dazzi A, Prater CB. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev. 2017;117(7):5146–73.Google Scholar
  33. 33.
    Nowak D, Morrison W, Wickramasinghe HK, Jahng J, Potma E, Wan L, et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci Adv. 2016;2(3):e1501571.PubMedPubMedCentralGoogle Scholar
  34. 34.
    de Wit G, Danial JS, Kukura P, Wallace MI. Dynamic label-free imaging of lipid nanodomains. Proc Natl Acad Sci U S A. 2015;112(40):12299–303.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Muller EA, Pollard B, Raschke MB. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J Phys Chem Lett. 2015;6(7):1275–84.PubMedGoogle Scholar
  36. 36.
    Zhang R, Zhang Y, Dong Z, Jiang S, Zhang C, Chen L, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 2013;498(7452):82–6.PubMedGoogle Scholar
  37. 37.
    Landoulsi J, Dupres V. Direct AFM force mapping of surface nanoscale organization and protein adsorption on an aluminum substrate. Phys Chem Chem Phys. 2013;15(21):8429–40.PubMedGoogle Scholar
  38. 38.
    Beccari M, Kanjilal A, Betti MG, Mariani C, Floreano L, Cossaro A, et al. Characterization of benzenethiolate self-assembled monolayer on Cu(100) by XPS and NEXAFS. J Electron Spectrosc Relat Phenom. 2009;172(1):64–8.Google Scholar
  39. 39.
    Weidner T, Apte JS, Gamble LJ, Castner DG. Probing the orientation and conformation of α-helix and β-strand model peptides on self-assembled monolayers using sum frequency generation and NEXAFS spectroscopy. Langmuir. 2010;26(5):3433–40.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Marsi M, Casalis L, Gregoratti L, Günther S, Kolmakov A, Kovac J, et al. ESCA microscopy at ELETTRA: what it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source. J Electron Spectrosc Relat Phenom. 1997;84(1):73–83.Google Scholar
  41. 41.
    Bertsch PM, Hunter DB. Applications of synchrotron-based X-ray microprobes. Chem Rev. 2001;101(6):1809–42.PubMedGoogle Scholar
  42. 42.
    Whitby JA, Östlund F, Horvath P, Gabureac M, Riesterer JL, Utke I, et al. High spatial resolution time-of-flight secondary ion mass spectrometry for the masses: a novel orthogonal ToF FIB-SIMS instrument with in situ AFM. Adv Mater Sci Eng. 2012:180437.
  43. 43.
    Ghonaim NW, Nieradko M, Xi L, Nie HY, Francis JT, Grizzi O, et al. Primary ion fluence dependence in time-of-flight SIMS of self-assembled monolayer of alkyl thiol molecules on Au(111)—discussion of static limit. Appl Surf Sci. 2008;255(4):1029–32.Google Scholar
  44. 44.
    Samuel NT, Castner DG. ToF-SIMS characterization of hybridization onto self-assembled single-stranded DNA monolayers. Appl Surf Sci. 2004:397–401.
  45. 45.
    Kempson IM, Martin AL, Denman JA, French PW, Prestidge CA, Barnes TJ. Detecting the presence of denatured human serum albumin in an adsorbed protein monolayer using TOF−SIMS. Langmuir. 2010;26(14):12075–80.PubMedGoogle Scholar
  46. 46.
    Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, et al. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A. 2013;110(8):E613–22.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Spengler B, Hubert M. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J Am Soc Mass Spectrom. 2002;13(6):735–48.PubMedGoogle Scholar
  48. 48.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.PubMedGoogle Scholar
  49. 49.
    Owen DM, Magenau A, Williamson DJ, Gaus K. Super-resolution imaging by localization microscopy. Methods Mol Biol. 2013;950:81–93.PubMedGoogle Scholar
  50. 50.
    Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3(10):793–6.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Heintzmann R, Jovin TM, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A. 2002;19(8):1599–609.Google Scholar
  52. 52.
    Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19(11):780–2.PubMedGoogle Scholar
  53. 53.
    Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A. 2006;103(31):11440–5.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci. 2010;123(21):3621.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Matthew RR, Michael Cai W, Xu X, John AR, SungWoo N, William PK. Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. Nanotechnology. 2017;28(35):355707.Google Scholar
  56. 56.
    Rajapaksa I, Uenal K, Wickramasinghe HK. Image force microscopy of molecular resonance: a microscope principle. Appl Phys Lett. 2010;97(7):073121.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, et al. Interferometric scattering microscopy for the study of molecular motors. Methods in Enzymol. 2016; 581:517–39.Google Scholar
  58. 58.
    Ortega Arroyo J, Cole D, Kukura P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat Protoc. 2016;11(4):617–33.PubMedGoogle Scholar
  59. 59.
    Centrone A. Infrared imaging and spectroscopy beyond the diffraction limit. Annu Rev Anal Chem. 2015;8(1):101–26.Google Scholar
  60. 60.
    Chiang N, Jiang N, Chulhai DV, Pozzi EA, Hersam MC, Jensen L, et al. Molecular-resolution interrogation of a porphyrin monolayer by ultrahigh vacuum tip-enhanced Raman and fluorescence spectroscopy. Nano Lett. 2015;15(6):4114–20.PubMedGoogle Scholar
  61. 61.
    Höppener C, Novotny L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 2008;8(2):642–6.PubMedGoogle Scholar
  62. 62.
    Su W, Kumar N, Mignuzzi S, Crain J, Roy D. Nanoscale mapping of excitonic processes in single-layer MoS 2 using tip-enhanced photoluminescence microscopy. Nanoscale. 2016;8(20):10564–9.PubMedGoogle Scholar
  63. 63.
    Park K-D, Khatib O, Kravtsov V, Clark G, Xu X, Raschke MB. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 2016;16(4):2621–7.PubMedGoogle Scholar
  64. 64.
    Singh R. CV Raman and the discovery of the Raman effect. Phys Perspect. 2002;4(4):399–420.Google Scholar
  65. 65.
    Smith E, Dent G. Modern Raman spectroscopy: a practical approach. Wiley; 2005.
  66. 66.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99(10):2957–76.PubMedGoogle Scholar
  67. 67.
    Cardinal MF, Vander Ende E, Hackler RA, McAnally MO, Stair PC, Schatz GC, et al. Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev. 2017;46(13):3886–903.PubMedGoogle Scholar
  68. 68.
    Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev. 2017;117(12):7910–63.PubMedGoogle Scholar
  69. 69.
    Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy. Chem Rev. 2017;117(11):7583–613.PubMedGoogle Scholar
  70. 70.
    Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017;46(13):3945–61.PubMedGoogle Scholar
  71. 71.
    Verma P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem Rev. 2017;117(9):6447–66.PubMedGoogle Scholar
  72. 72.
    Pettinger B, Schambach P, Villagómez CJ, Scott N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem. 2012;63(1):379–99.PubMedGoogle Scholar
  73. 73.
    Pozzi EA, Goubert G, Chiang N, Jiang N, Chapman CT, McAnally MO, et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem Rev. 2017;117(7):4961–82.PubMedGoogle Scholar
  74. 74.
    Le Ru E, Etchegoin P. Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects. Amsterdam: Elsevier; 2008.Google Scholar
  75. 75.
    Wessel J. Surface-enhanced optical microscopy. J Opt Soc Am B. 1985;2(9):1538–41.Google Scholar
  76. 76.
    Stöckle RM, Suh YD, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett. 2000;318(1):131–6.Google Scholar
  77. 77.
    Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single moleculer spectroscopy (E). Electrochemistry. 2000;68(12):942–9.Google Scholar
  78. 78.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Opt Commun. 2000;183(1):333–6.Google Scholar
  79. 79.
    Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett. 2000;76(21):3130–2.Google Scholar
  80. 80.
    Moskovits M, Suh JS. Surface selection rules for surface-enhanced Raman pectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem. 1984;88(23):5526–30.Google Scholar
  81. 81.
    Jiang S, Zhang Y, Zhang R, Hu C, Liao M, Luo Y, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol. 2015;10(10):865–9.PubMedGoogle Scholar
  82. 82.
    Sun M, Fang Y, Zhang Z, Xu H. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys Rev E. 2013;87(2):020401.Google Scholar
  83. 83.
    Watanabe H, Hayazawa N, Inouye Y, Kawata S. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J Phys Chem B. 2005;109(11):5012–20.PubMedGoogle Scholar
  84. 84.
    Jiang N, Chiang N, Madison LR, Pozzi EA, Wasielewski MR, Seideman T, et al. Nanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 2016;16(6):3898–904.PubMedGoogle Scholar
  85. 85.
    Shao F, Müller V, Zhang Y, Schlüter AD, Zenobi R. Nanoscale chemical imaging of interfacial monolayers by tip-enhanced Raman spectroscopy. Angew Chem Int Ed. 2017;56(32):9361–6.Google Scholar
  86. 86.
    Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol. 2009;4(8):496–9.PubMedGoogle Scholar
  87. 87.
    Zhang W, Yeo BS, Schmid T, Zenobi R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C. 2007;111(4):1733–8.Google Scholar
  88. 88.
    Steidtner J, Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett. 2008;100(23):236101.PubMedGoogle Scholar
  89. 89.
    Shi X, Coca-López N, Janik J, Hartschuh A. Advances in tip-enhanced near-field Raman microscopy using Nanoantennas. Chem Rev. 2017;117(7):4945–60.Google Scholar
  90. 90.
    Asghari-Khiavi M, Wood BR, Hojati-Talemi P, Downes A, McNaughton D, Mechler A. Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J Raman Spectrosc. 2012;43(2):173–80.Google Scholar
  91. 91.
    Zhang W, Cui X, Martin OJF. Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J Raman Spectrosc. 40(10):1338–42.Google Scholar
  92. 92.
    Hartschuh A. Tip-enhanced near-field optical microscopy. Angew Chem Int Ed. 2009;47(43):8178–91.Google Scholar
  93. 93.
    Kawata S, Ichimura T, Taguchi A, Kumamoto Y. Nano-Raman scattering microscopy: resolution and enhancement. Chem Rev. 2017;117(7):4983–5001.Google Scholar
  94. 94.
    Taguchi A. Plasmonic tip for nano Raman microcopy: structures, materials, and enhancement. Opt Rev. 2017;24(3):462–9.Google Scholar
  95. 95.
    Kazemi-Zanjani N, Vedraine S, Lagugne-Labarthet F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt Express. 2013;21(21):25271–6.PubMedGoogle Scholar
  96. 96.
    Huang TX, Huang SC, Li MH, Zeng ZC, Wang X, Ren B. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem. 2015;407(27):8177–95.PubMedGoogle Scholar
  97. 97.
    Stadler J, Oswald B, Schmid T, Zenobi R. Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy. J Raman Spectrosc. 2013;44(2):227–33.Google Scholar
  98. 98.
    Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R. Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci. 2009;603(10):1335–41.Google Scholar
  99. 99.
    Sattler KD. Handbook of nanophysics: nanoparticles and quantum dots. Boca Raton: CRC Press; 2016.Google Scholar
  100. 100.
    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem Soc Rev. 2017;46(13):3922–44.PubMedGoogle Scholar
  101. 101.
    Rendell RW, Scalapino DJ. Surface plasmons confined by microstructures on tunnel junctions. Phys Rev B. 1981;24(6):3276–94.Google Scholar
  102. 102.
    Yang Z, Aizpurua J, Xu H. Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc. 2009;40(10):1343–8.Google Scholar
  103. 103.
    Becker SF, Esmann M, Yoo K, Gross P, Vogelgesang R, Park N, et al. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photonics. 2016;3(2):223–32.Google Scholar
  104. 104.
    Stadler J, Schmid T, Zenobi R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 2010;10(11):4514–20.PubMedGoogle Scholar
  105. 105.
    Wickramasinghe HK, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano. 2014;8(4):3421–6.PubMedGoogle Scholar
  106. 106.
    van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJ, Deckert V, Weckhuysen BM. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol. 2012;7(9):583–6.PubMedGoogle Scholar
  107. 107.
    Blum C, Opilik L, Atkin JM, Braun K, Kämmer SB, Kravtsov V, et al. Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J Raman Spectrosc. 2014;45(1):22–31.Google Scholar
  108. 108.
    Müller V, Shao F, Baljozovic M, Moradi M, Zhang Y, Jung T, et al. Structural characterization of a covalent monolayer sheet obtained by two-dimensional polymerization at an air/water interface. Angew Chem Int Ed. 2017;56(48):15262–6.Google Scholar
  109. 109.
    Taguchi A, Hayazawa N, Furusawa K, Ishitobi H, Kawata S. Deep-UV tip-enhanced Raman scattering. J Raman Spectrosc. 2009;40(9):1324–30.Google Scholar
  110. 110.
    Yang Z, Li Q, Fang Y, Sun M. Deep ultraviolet tip-enhanced Raman scattering. Chem Commun. 2011;47(32):9131–3.Google Scholar
  111. 111.
    Schlegel VL, Cotton TM. Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. Anal Chem. 1991;63(3):241–7.PubMedGoogle Scholar
  112. 112.
    Golan Y, Margulis L, Rubinstein I. Vacuum-deposited gold films: I. Factors affecting the film morphology. Surf Sci. 1992;264(3):312–26.Google Scholar
  113. 113.
    Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR. Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B. 2005;109(16):7969–75.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Huang T-X, Li C-W, Yang L-K, Zhu J-F, Yao X, Liu C, et al. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale. 2018;10(9):4398–405.PubMedGoogle Scholar
  115. 115.
    Taguchi A, Yu J, Verma P, Kawata S. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale. 2015;7(41):17424–33.PubMedGoogle Scholar
  116. 116.
    Cui X, Zhang W, Yeo B-S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Opt Express. 2007;15(13):8309–16.PubMedGoogle Scholar
  117. 117.
    Yeo B-S, Schmid T, Zhang W, Zenobi R. Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal Bioanal Chem. 2007;387(8):2655–62.PubMedGoogle Scholar
  118. 118.
    Yeo B-S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Appl Spectrosc. 2006;60(10):1142–7.PubMedGoogle Scholar
  119. 119.
    Zou Y, Steinvurzel P, Yang T, Crozier KB. Surface plasmon resonances of optical antenna atomic force microscope tips. Appl Phys Lett. 2009;94(17):171107.Google Scholar
  120. 120.
    Imad M, Atsushi T, Yuika S, Satoshi K, Prabhat V. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Appl Phys Express. 2015;8(3):032401.Google Scholar
  121. 121.
    Yang L-K, Huang T-X, Zeng Z-C, Li M-H, Wang X, Yang F-Z, et al. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale. 2015;7(43):18225–31.PubMedGoogle Scholar
  122. 122.
    Brejna PR, Griffiths PR. Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl Spectrosc. 2010;64(5):493–9.PubMedGoogle Scholar
  123. 123.
    Takayuki U, Taka-aki Y, Yuika S, Prabhat V. Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy. Appl Phys Express. 2012;5(5):052001.Google Scholar
  124. 124.
    Sqalli O, Bernal MP, Hoffmann P, Marquis-Weible F. Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle. Appl Phys Lett. 2000;76(15):2134–6.Google Scholar
  125. 125.
    Dill TJ, Rozin MJ, Palani S, Tao AR. Colloidal nanoantennas for hyperspectral chemical mapping. ACS Nano. 2016;10(8):7523–31.PubMedGoogle Scholar
  126. 126.
    Farahani JN, Pohl DW, Eisler HJ, Hecht B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett. 2005;95(1):017402.PubMedGoogle Scholar
  127. 127.
    Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban JJ, Pang Y, et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Lett. 2011;11(3):1201–7.PubMedGoogle Scholar
  128. 128.
    De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol. 2010;5(1):67–72.PubMedGoogle Scholar
  129. 129.
    Fleischer M, Weber-Bargioni A, Altoe MVP, Schwartzberg AM, Schuck PJ, Cabrini S, et al. Gold nanocone near-field scanning optical microscopy probes. ACS Nano. 2011;5(4):2570–9.PubMedGoogle Scholar
  130. 130.
    Macpherson JV, Unwin PR. Combined scanning electrochemical–atomic force microscopy. Anal Chem. 2000;72(2):276–85.PubMedGoogle Scholar
  131. 131.
    Melmed AJ. The art and science and other aspects of making sharp tips. J Vac Sci Technol B. 1991;9(2):601–8.Google Scholar
  132. 132.
    Sasaki SS, Perdue SM, Perez AR, Tallarida N, Majors JH, Apkarian VA, et al. Note: automated electrochemical etching and polishing of silver scanning tunneling microscope tips. Rev Sci Instrum. 2013;84(9):096109.PubMedGoogle Scholar
  133. 133.
    Li M, Lv R, Huang S, Dai Y, Zeng Z, Wang L, et al. Electrochemical fabrication of silver tips for tip-enhanced Raman spectroscopy assisted by a machine vision system. J Raman Spectrosc. 2016;47(7):808–12.Google Scholar
  134. 134.
    Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 2012;12(10):5061–7.PubMedGoogle Scholar
  135. 135.
    Ren B, Picardi G, Pettinger B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instrum. 2004;75(4):837–41.Google Scholar
  136. 136.
    Billot L, Berguiga L, De La Chapelle ML, Gilbert Y, Bachelot R. Production of gold tips for tip-enhanced near-field optical microscopy and spectroscopy: analysis of the etching parameters. Eur Phys J Appl Phys. 2005;31(2):139–45.Google Scholar
  137. 137.
    Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D. Etching gold tips suitable for tip-enhanced near-field optical microscopy. Rev Sci Instrum. 2009;80(3):033701.PubMedGoogle Scholar
  138. 138.
    Kharintsev SS, Hoffmann GG, Fishman AI, Salakhov MK. Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy. J Phys D Appl Phys. 2013;46(14):145501.Google Scholar
  139. 139.
    Berweger S, Atkin JM, Olmon RL, Raschke MB. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J Phys Chem Lett. 2010;1(24):3427–32.Google Scholar
  140. 140.
    Zeng Z-C, Huang S-C, Wu D-Y, Meng L-Y, Li M-H, Huang T-X, et al. Electrochemical tip-enhanced Raman spectroscopy. J Am Chem Soc. 2015;137(37):11928–31.PubMedGoogle Scholar
  141. 141.
    Martín Sabanés N, Driessen LMA, Domke KF. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal Chem. 2016;88(14):7108–14.PubMedGoogle Scholar
  142. 142.
    Martín Sabanés N, Ohto T, Andrienko D, Nagata Y, Domke KF. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew Chem Int Ed. 2017;56(33):9796–801.Google Scholar
  143. 143.
    Meyer R, Yao X, Deckert V. Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy. TrAC Trends Anal Chem. 2018;102:250–8.Google Scholar
  144. 144.
    Zhang D, Wang X, Braun K, Egelhaaf H-J, Fleischer M, Hennemann L, et al. Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials. J Raman Spectrosc. 2009;40(10):1371–6.Google Scholar
  145. 145.
    Neacsu CC, Dreyer J, Behr N, Raschke MB. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys Rev B. 2006;73(19):193406.Google Scholar
  146. 146.
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett. 2003;90(9):095503.PubMedGoogle Scholar
  147. 147.
    Wang J, Wu X, Wang R, Zhang M. Detection of carbon nanotubes using tip-enhanced Raman spectroscopy. In: Electronic properties of carbon nanotubes. InTech; 2011; 211–246.Google Scholar
  148. 148.
    Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J Microsc. 2001;202(1):72–6.PubMedGoogle Scholar
  149. 149.
    Christiane H, Lukas N. Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology. 2008;19(38):384012.Google Scholar
  150. 150.
    Le Nader V, Mevellec J-Y, Minea T, Louarn G. Gold nanoparticles as probes for nano-Raman spectroscopy: preliminary experimental results and modeling. Int J Opt. 2012:591083–88.Google Scholar
  151. 151.
    Stadler J, Schmid T, Opilik L, Kuhn P, Dittrich PS, Zenobi R. Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers. Beilstein J Nanotechnol. 2011;2:509.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Opilik L, Dogan Ü, Szczerbiński J, Zenobi R. Degradation of silver near-field optical probes and its electrochemical reversal. Appl Phys Lett. 2015;107(9):091109.Google Scholar
  153. 153.
    Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD. Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J Phys Chem C. 2009;113(19):8158–61.Google Scholar
  154. 154.
    Pieczonka NPW, Aroca RF. Inherent complexities of trace detection by surface-enhanced Raman scattering. ChemPhysChem. 2005;6(12):2473–84.PubMedGoogle Scholar
  155. 155.
    Waterhouse GIN, Bowmaker GA, Metson JB. Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study. Appl Surf Sci. 2003;214(1):36–51.Google Scholar
  156. 156.
    Martina I, Wiesinger R, Schreiner M. Micro-Raman investigations of early stage silver corrosion products occurring in sulfur containing atmospheres. J Raman Spectrosc. 2013;44(5):770–5.Google Scholar
  157. 157.
    Yeo B-S, Schmid T, Zhang W, Zenobi R. A strategy to prevent signal losses, analyte decomposition, and fluctuating carbon contamination bands in surface-enhanced Raman spectroscopy. Appl Spectrosc. 2008;62(6):708–13.PubMedGoogle Scholar
  158. 158.
    Agapov RL, Sokolov AP, Foster MD. Protecting TERS probes from degradation: extending mechanical and chemical stability. J Raman Spectrosc. 2013;44(5):710–6.Google Scholar
  159. 159.
    Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett. 2009;472(1–3):1–13.Google Scholar
  160. 160.
    Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale. 2012;4(6):1856–70.PubMedGoogle Scholar
  161. 161.
    Zhang W, Schmid T, Yeo B-S, Zenobi R. Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy. J Phys Chem C. 2008;112(6):2104–8.Google Scholar
  162. 162.
    Schmid T, Opilik L, Blum C, Zenobi R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew Chem Int Ed. 2013;52(23):5940–54.Google Scholar
  163. 163.
    Domke KF, Zhang D, Pettinger B. Enhanced Raman spectroscopy: single molecules or carbon? J Phys Chem C. 2007;111(24):8611–6.Google Scholar
  164. 164.
    Chaigneau M, Picardi G, Ossikovski R. Tip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfaces. Surf Sci. 2010;604(7):701–5.Google Scholar
  165. 165.
    Opilik L, Uz D, Li C-Y, Stephanidis B, Li J-F, Zenobi R. Chemical production of thin protective coatings on optical nanotips for tip-enhanced Raman spectroscopy. J Phys Chem C. 2016;120(37):20828–32.Google Scholar
  166. 166.
    Schmid T, Yeo B-S, Leong G, Stadler J, Zenobi R. Performing tip-enhanced Raman spectroscopy in liquids. J Raman Spectrosc. 2009;40(10):1392–9.Google Scholar
  167. 167.
    Kumar N, Spencer SJ, Imbraguglio D, Rossi AM, Wain AJ, Weckhuysen BM, et al. Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. Phys Chem Chem Phys. 2016;18(19):13710–6.PubMedGoogle Scholar
  168. 168.
    Paulite M, Blum C, Schmid T, Opilik L, Eyer K, Walker GC, et al. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1–40) peptide fragments. ACS Nano. 2013;7(2):911–20.PubMedGoogle Scholar
  169. 169.
    Liao M, Jiang S, Hu C, Zhang R, Kuang Y, Zhu J, et al. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 2016;16(7):4040–6.PubMedGoogle Scholar
  170. 170.
    Lin WI, Shao F, Stephanidis B, Zenobi R. Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions. Anal Bioanal Chem. 2015;407(27):8197–204.PubMedGoogle Scholar
  171. 171.
    Opilik L, Bauer T, Schmid T, Stadler J, Zenobi R. Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. Phys Chem Chem Phys. 2011;13(21):9978–81.PubMedGoogle Scholar
  172. 172.
    Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J Phys Chem C. 2007;111(26):9460–4.Google Scholar
  173. 173.
    Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat. 1873;9(1):413–8.Google Scholar
  174. 174.
    Rayleigh L. XII. On the manufacture and theory of diffraction-gratings. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1874;47(310):81–93.
  175. 175.
    Zhang R, Zhang X, Wang H, Zhang Y, Jiang S, Hu C, et al. Distinguishing individual DNA bases in a network by non-resonant tip-enhanced Raman scattering. Angew Chem Int Ed. 2017;56(20):5561–4.Google Scholar
  176. 176.
    Chiang N, Chen X, Goubert G, Chulhai DV, Chen X, Pozzi EA, et al. Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 2016;16(12):7774–8.PubMedGoogle Scholar
  177. 177.
    Tallarida N, Lee J, Apkarian VA. Tip-enhanced Raman spectromicroscopy on the angstrom scale: bare and CO-terminated Ag tips. ACS Nano. 2017;11(11):11393–401.PubMedGoogle Scholar
  178. 178.
    Lee J, Tallarida N, Chen X, Liu P, Jensen L, Apkarian VA. Tip-enhanced Raman Spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists’ microscope. ACS Nano. 2017;11(11):11466–74.PubMedGoogle Scholar
  179. 179.
    Lin X-M, Deckert-Gaudig T, Singh P, Siegmann M, Kupfer S, Zhang Z, et al. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering. arXiv preprint. 2016; arXiv:160406598.Google Scholar
  180. 180.
    Deckert-Gaudig T, Kurouski D, Hedegaard MA, Singh P, Lednev IK, Deckert V. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils. Sci Rep. 2016;6:33575.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Uzunbajakava N, Lenferink A, Kraan Y, Volokhina E, Vrensen G, Greve J, et al. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys J. 2003;84(6):3968–81.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Bonhommeau S, Lecomte S. Tip-enhanced Raman spectroscopy: a tool for nanoscale chemical and structural characterization of biomolecules. ChemPhysChem. 2017;19(1):8–18.PubMedGoogle Scholar
  183. 183.
    Klingsporn JM, Jiang N, Pozzi EA, Sonntag MD, Chulhai D, Seideman T, et al. Intramolecular insight into adsorbate–substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J Am Chem Soc. 2014;136(10):3881–7.PubMedGoogle Scholar
  184. 184.
    Trautmann S, Aizpurua J, Gotz I, Undisz A, Dellith J, Schneidewind H, et al. A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale. 2017;9(1):391–401.PubMedGoogle Scholar
  185. 185.
    Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, et al. Single-molecule optomechanics in “picocavities”. Science. 2016;354(6313):726–9.PubMedGoogle Scholar
  186. 186.
    Meng L, Yang Z, Chen J, Sun M. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy. Sci Rep. 2015;5:9240.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J Am Chem Soc. 2015;137(30):9515–8.PubMedGoogle Scholar
  188. 188.
    Duan S, Tian G, Luo Y. Theory for modeling of high resolution resonant and nonresonant Raman images. J Chem Theory Comput. 2016;12(10):4986–95.PubMedGoogle Scholar
  189. 189.
    Zhang C, Chen B-Q, Li Z-Y. Optical origin of subnanometer resolution in tip-enhanced Raman mapping. J Phys Chem C. 2015;119(21):11858–71.Google Scholar
  190. 190.
    Roelli P, Galland C, Piro N, Kippenberg TJ. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat Nanotechnol. 2015;11:164–9.PubMedGoogle Scholar
  191. 191.
    Latorre F, Kupfer S, Bocklitz T, Kinzel D, Trautmann S, Grafe S, et al. Spatial resolution of tip-enhanced Raman spectroscopy—DFT assessment of the chemical effect. Nanoscale. 2016;8(19):10229–39.PubMedGoogle Scholar
  192. 192.
    Liu P, Chulhai DV, Jensen L. Single-molecule imaging using atomistic near-field tip-enhanced Raman spectroscopy. ACS Nano. 2017;11(5):5094–102.PubMedGoogle Scholar
  193. 193.
    Sheppard N, Erkelens J. Vibrational spectra of species adsorbed on surfaces: forms of vibrations and selection rules for regular arrays of adsorbed species. Appl Spectrosc. 1984;38(4):471–85.Google Scholar
  194. 194.
    Moskovits M. Surface selection rules. J Chem Phys. 1982;77(9):4408–16.Google Scholar
  195. 195.
    Madey TE, Yates JT Jr. Vibrational spectroscopy of molecules on surfaces. New York: Plenum Press; 1987.Google Scholar
  196. 196.
    Creighton JA. Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: the determination of adsorbate orientation from SERS relative intensities. Surf Sci. 1983;124(1):209–19.Google Scholar
  197. 197.
    Landau LD, Bell J, Kearsley M, Pitaevskii L, Lifshitz E, Sykes J. Electrodynamics of continuous media. 2nd ed. Butterworth-Heinenann: Oxford, 2013.Google Scholar
  198. 198.
    Tsuboi M, Benevides JM, Thomas GJ Jr. Raman tensors and their application in structural studies of biological systems. Proc Jpn Acad Ser B. 2009;85(3):83–97.Google Scholar
  199. 199.
    Tsuboi M, Thomas GJ. Raman scattering tensors in biological molecules and their assemblies. Appl Spectrosc Rev. 1997;32(3):263–99.Google Scholar
  200. 200.
    Poliani E, Wagner MR, Vierck A, Herziger F, Nenstiel C, Gannott F, et al. Breakdown of far-field Raman selection rules by light–plasmon coupling demonstrated by tip-enhanced Raman scattering. J Phys Chem Lett. 2017;8(22):5462–71.PubMedGoogle Scholar
  201. 201.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.PubMedGoogle Scholar
  202. 202.
    Beams R. Tip-enhanced Raman scattering of graphene. J Raman Spectrosc. 2017;49(1):157–67.Google Scholar
  203. 203.
    Wu J-B, Lin M-L, Cong X, Liu H-N, Tan P-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. 2018;47(5):1822–73.PubMedGoogle Scholar
  204. 204.
    Beams R. Tip-enhanced Raman scattering of graphene. J Raman Spectrosc. 2018;49(1):157–67.Google Scholar
  205. 205.
    Zandiatashbar A, Lee G-H, An SJ, Lee S, Mathew N, Terrones M, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun. 2014;5:3186.PubMedGoogle Scholar
  206. 206.
    Hwangbo Y, Lee C-K, Kim S-M, Kim J-H, Kim K-S, Jang B, et al. Fracture characteristics of monolayer CVD-graphene. Sci Rep. 2014;4:4439.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Schwierz F. Graphene transistors. Nat Nanotechnol. 2010;5(7):487–96.PubMedGoogle Scholar
  208. 208.
    Yazyev OV, Helm L. Defect-induced magnetism in graphene. Phys Rev B. 2007;75(12):125408.Google Scholar
  209. 209.
    Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M. The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater. 2012;11(9):759–63.PubMedGoogle Scholar
  210. 210.
    Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano. 2011;5(1):26–41.PubMedGoogle Scholar
  211. 211.
    Stadler J, Schmid T, Zenobi R. Nanoscale chemical imaging of single-layer graphene. ACS Nano. 2011;5(10):8442–8.PubMedGoogle Scholar
  212. 212.
    Mignuzzi S, Kumar N, Brennan B, Gilmore IS, Richards D, Pollard AJ, et al. Probing individual point defects in graphene via near-field Raman scattering. Nanoscale. 2015;7(46):19413–8.PubMedGoogle Scholar
  213. 213.
    Su W, Kumar N, Dai N, Roy D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem Commun. 2016;52(53):8227–30.Google Scholar
  214. 214.
    Li X, Liu Y, Zeng Z, Wang P, Fang Y, Zhang L. Investigation on tip enhanced Raman spectra of graphene. Spectrochim Acta A Mol Biomol Spectrosc. 2018;190:378–82.PubMedGoogle Scholar
  215. 215.
    Su W, Roy D. Visualizing graphene edges using tip-enhanced Raman spectroscopy. J Vac Sci Technol B Nanotechnol Microelectron. 2013;31(4):041808.Google Scholar
  216. 216.
    Beams R, Cançado LG, Oh S-H, Jorio A, Novotny L. Spatial coherence in near-field Raman scattering. Phys Rev Lett. 2014;113(18):186101.PubMedGoogle Scholar
  217. 217.
    Beams R, Cançado LG, Novotny L. Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 2011;11(3):1177–81.PubMedGoogle Scholar
  218. 218.
    Park KD, Raschke Markus B, Atkin Joanna M, Lee Young H, Jeong Mun S. Probing bilayer grain boundaries in large-area graphene with tip-enhanced Raman spectroscopy. Adv Mater. 2017;29(7):1603601.Google Scholar
  219. 219.
    Snitka V, Rodrigues RD, Lendraitis V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron Eng. 2011;88(8):2759–62.Google Scholar
  220. 220.
    Ryan B, Luiz Gustavo C, Ado J, Vamivakas AN, Lukas N. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology. 2015;26(17):175702.Google Scholar
  221. 221.
    Geim AK, Grigorieva IV. van der Waals heterostructures. Nature. 2013;499(7459):419–25.PubMedGoogle Scholar
  222. 222.
    Chow PK, Jacobs-Gedrim RB, Gao J, Lu T-M, Yu B, Terrones H, et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano. 2015;9(2):1520–7.PubMedGoogle Scholar
  223. 223.
    Bao W, Borys NJ, Ko C, Suh J, Fan W, Thron A, et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat Commun. 2015;6:7993.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Su W, Kumar N, Mignuzzi S, Crain J, Roy D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale. 2016;8(20):10564–9.PubMedGoogle Scholar
  225. 225.
    Rahaman M, Rodriguez RD, Plechinger G, Moras S, Schüller C, Korn T, et al. Highly localized strain in a MoS2/Au Heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 2017;17(10):6027–33.PubMedGoogle Scholar
  226. 226.
    Milekhin AG, Rahaman M, Rodyakina EE, Latyshev AV, Dzhagan VM, Zahn DRT. Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale. 2018;10(6):2755–63.PubMedGoogle Scholar
  227. 227.
    Kory MJ, Wörle M, Weber T, Payamyar P, van de PollStan W, Dshemuchadse J, et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem. 2014;6(9):779–84.PubMedGoogle Scholar
  228. 228.
    Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat Chem. 2014;6(9):774–8.PubMedGoogle Scholar
  229. 229.
    Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, et al. A two-dimensional polymer prepared by organic synthesis. Nat Chem. 2012;4(4):287–91.PubMedGoogle Scholar
  230. 230.
    Bhola R, Payamyar P, Murray DJ, Kumar B, Teator AJ, Schmidt MU, et al. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J Am Chem Soc. 2013;135(38):14134–41.PubMedGoogle Scholar
  231. 231.
    Payamyar P, Kaja K, Ruiz-Vargas C, Stemmer A, Murray DJ, Johnson CJ, et al. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv Mater. 2014;26(13):2052–8.PubMedGoogle Scholar
  232. 232.
    Bauer T, Zheng Z, Renn A, Enning R, Stemmer A, Sakamoto J, et al. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew Chem Int Ed. 2011;50(34):7879–84.Google Scholar
  233. 233.
    Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed. 2015;54(41):12058–63.Google Scholar
  234. 234.
    Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T, Kusaka S, et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun. 2016;6:6713.Google Scholar
  235. 235.
    Opilik L, Payamyar P, Szczerbiński J, Schütz AP, Servalli M, Hungerland T, et al. Minimally invasive characterization of covalent monolayer sheets using tip-enhanced Raman spectroscopy. ACS Nano. 2015;9(4):4252–9.PubMedGoogle Scholar
  236. 236.
    Shao F, Dai W, Zhang Y, Zhang W, Schlüter AD, Zenobi R. Chemical mapping of Nanodefects within 2D covalent monolayers by tip-enhanced Raman spectroscopy. ACS Nano. 2018;12(5):5021–9.PubMedGoogle Scholar
  237. 237.
    Richards D, Milner RG, Huang F, Festy F. Tip-enhanced Raman microscopy: practicalities and limitations. J Raman Spectrosc. 2003;34(9):663–7.Google Scholar
  238. 238.
    Bjerneld EJ, Svedberg F, Johansson P, Käll M. Direct observation of heterogeneous photochemistry on aggregated ag nanocrystals using Raman spectroscopy: the case of photoinduced degradation of aromatic amino acids. J Phys Chem A. 2004;108(19):4187–93.Google Scholar
  239. 239.
    Matikainen A, Nuutinen T, Itkonen T, Heinilehto S, Puustinen J, Hiltunen J, et al. Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci Rep. 2016;6:37192.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Kurouski D, Mattei M, Van Duyne RP. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 2015;15(12):7956–62.PubMedGoogle Scholar
  241. 241.
    Jorio A, Mueller NS, Reich S. Symmetry-derived selection rules for plasmon-enhanced Raman scattering. Phys Rev B. 2017;95(15):155409.Google Scholar
  242. 242.
    Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol. 2013;8(2):100–3.PubMedGoogle Scholar
  243. 243.
    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater. 2014;13(12):1135–42.PubMedGoogle Scholar
  244. 244.
    Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science. 2013;340(6138):1311–4.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations