Skip to main content
Log in

High-affinity graphene oxide-encapsulated magnetic Zr-MOF for pretreatment and rapid determination of the photosensitizers hematoporphyrin and hematoporphyrin monomethyl ether in human urine prior to UPLC-HRMS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a high-affinity graphene oxide-encapsulated magnetic Zr-MOF (GO-Mag@Zr-MOF) was synthesized and characterized by SEM, TEM, and XPS for its morphology, structure, and components. Subsequently, the as-prepared GO-Mag@Zr-MOF was, for the first time, employed as magnetic solid-phase extraction (MSPE) adsorbent for pretreatment and determination of photodynamic therapy (PDT) with the photosensitizers hematoporphyrin (Hp) and hematoporphyrin monomethyl ether (HMME) in human urine samples coupled with ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). The synthesized GO-Mag@Zr-MOF revealed excellent adsorption efficiency for Hp and HMME in urine samples. Under optimal conditions, the spiked recoveries of the developed method were in the range of 89.5–105.6% with RSDs less than 10%. The limits of detection (LODs) were found to be 0.036 and 0.042 μg/L for Hp and HMME, respectively, while limits of quantitation (LOQs) were 0.12 and 0.14 μg/L. The proposed method was found to be rapid, effective, sensitive, and accurate for clinical analysis. Moreover, this paper, for the first time, carefully expounded the mass spectrum cracking mechanisms of Hp and HMME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brozek-Pluska B, Kopec M. Raman microspectroscopy of hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers. Spectrochim Acta A Mol Biomol Spectrosc. 2016;169:182–91.

    Article  CAS  Google Scholar 

  2. Tian ZD, Quan XM, Xu CS, Dan L, Guo H, Leung WN. Hematoporphyrin monomethyl ether enhances the killing action of ultrasound on osteosarcoma in vivo. J Ultrasound Med. 2009;28:1695–702.

    Article  Google Scholar 

  3. Sibille A, Lambert R, Souquet JC, Sabben G, Descos F. Long-term survival after photodynamic therapy for esophageal cancer. Gastroenterology. 1995;108(2):337–44.

    Article  CAS  Google Scholar 

  4. Yang J, Shen H, Jin H, Lou Q, Zhang X. Treatment of unresectable extrahepatic cholangiocarcinoma using hematoporphyrin photodynamic therapy: a prospective study. Photodiagn Photodyn Ther. 2016;16:110–8.

    Article  CAS  Google Scholar 

  5. Tang Y, Xie H, Li J, Jian D. The association between treatment reactions and treatment efficiency of Hemoporfin-photodynamic therapy on port wine stains: a prospective double blind randomized controlled trial. Photodiagn Photodyn Ther. 2017;18:171–8.

    Article  CAS  Google Scholar 

  6. Wang Y, Zuo Z, Liao X, Gu Y, Qiu H, Zeng J. Investigation of photodynamic therapy optimization for port wine stain using modulation of photosensitizer administration methods. Exp Biol Med. 2013;238(12):1344–9.

    Article  Google Scholar 

  7. Qin ZP, Li KL, Ren L, Liu XJ. Photodynamic therapy of port wine stains-a report of 238 cases. Photodiagn Photodyn Ther. 2007;4(1):53–9.

    Article  Google Scholar 

  8. Qiu H, Gu Y, Wang Y, Huang N. Twenty years of clinical experience with a new modality of vascular-targeted photodynamic therapy for port wine stains. Dermatol Surg. 2011;37(11):1603–10.

    Article  CAS  Google Scholar 

  9. Bertoloni G, Lauro FM, Cortella G, Merchat M. Photosensitizing activity of hematoporphyrin on staphylococcus aureus cells. BBA-Gen Subjects. 2000;1475(2):169–74.

    Article  CAS  Google Scholar 

  10. Aharon D, Weitman H, Ehrenberg B. The effect of liposomes’ surface electric potential on the uptake of hematoporphyrin. Biochim Biophys Acta. 2011;1808(8):2031–5.

    Article  CAS  Google Scholar 

  11. McCaughan JS, Mertens BF, Cho C, Barabash RD, Payton HW. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg. 1991;126(1):111–3.

    Article  Google Scholar 

  12. Zhao Y, Tu P, Zhou G, Zhou Z, Lin X, Yang H, et al. Hemoporfin photodynamic therapy for port-wine stain: a randomized controlled trial. PLoS One. 2016;11(5):e0156219.

    Article  Google Scholar 

  13. Klein A, Baumler W, Landthaler M, Babilas P. Laser and IPL treatment of port-wine stains: therapy options, limitations, and practical aspects. Lasers Med Sci. 2011;26(6):845–59.

    Article  Google Scholar 

  14. Gasco MR, Trotta M. Determination of hematoporphyrin and protoporphyrin by ion-pair extraction with chlorpromazine. J Pharm Sci. 1981;70(11):1294–5.

    Article  CAS  Google Scholar 

  15. Chan EN, Goodall DM. Capillary electrophoresis analysis of polyhaematoporphyrin, a photosensitizer used in photodynamic therapy. J Chromatogr A. 1993;636(1):171–8.

    Article  CAS  Google Scholar 

  16. Houle JM, Strong A. Clinical pharmacokinetics of verteporfin. J Clin Pharmacol. 2002;42(5):547–57.

    Article  CAS  Google Scholar 

  17. Chen Z, Song T, Chen X, Wang S, Chen J. Study on the interaction between hematoporphyrin monomethyl ether and DNA and the determination of hematoporphyrin monomethyl ether using the resonance light scattering technique. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77(3):605–11.

    Article  Google Scholar 

  18. Ackroyd R, Brown N, Vernon D, Roberts D, Stephenson T, Marcus S, et al. 5-Aminolevulinic acid photosensitization of dysplastic Barrett's esophagus: a pharmacokinetic study. Photochem Photobiol. 1999;70(4):656–62.

    CAS  PubMed  Google Scholar 

  19. Li P, Sun JG, Huang CR, Pan GY, Xu MJ, Li J, et al. Development and validation of a sensitive quantification method for hematoporphyrin monomethyl ether in plasma using high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr. 2006;20(12):1277–82.

    Article  CAS  Google Scholar 

  20. Koster RA, Alffenaar J-WC, Greijdanus B, VanDerNagel JE, Uges DR. Application of sweat patch screening for 16 drugs and metabolites using a fast and highly selective LC-MS/MS method. Ther Drug Monit. 2014;36(1):35–45.

    CAS  PubMed  Google Scholar 

  21. Hoff RB, Rübensam G, Jank L, Barreto F, Peralba MCR, Pizzolato TM, et al. Analytical quality assurance in veterinary drug residue analysis methods: matrix effects determination and monitoring for sulfonamides analysis. Talanta. 2015;132:443–50.

    Article  CAS  Google Scholar 

  22. Montesano C, Simeoni MC, Curini R, Sergi M, Sterzo CL, Compagnone D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC-MS/MS. Anal Bioanal Chem. 2015;407(13):3647–58.

    Article  CAS  Google Scholar 

  23. Soleimani M, Ahmadi M, Madrakian T, Afkhami A. Magnetic solid phase extraction of rizatriptan in human urine samples prior to its spectrofluorimetric determination. Sensors Actuators B Chem. 2018;254:1225–33.

    Article  CAS  Google Scholar 

  24. Cheng G, Liu Y-L, Wang Z-G, Zhang J-L, Sun D-H, Ni J-Z. The GO/rGO–Fe3O4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. J Mater Chem. 2012;22(41):21998.

    Article  CAS  Google Scholar 

  25. Cheng G, Wang ZG, Liu YL, Zhang JL, Sun DH, Ni JZ. A graphene-based multifunctional affinity probe for selective capture and sequential identification of different biomarkers from biosamples. Chem Commun. 2012;48(82):10240–2.

    Article  CAS  Google Scholar 

  26. Amiri A, Saadati-Moshtaghin HR, Zonoz FM, Targhoo A. Preparation and characterization of magnetic Wells-Dawson heteropoly acid nanoparticles for magnetic solid-phase extraction of aromatic amines in water samples. J Chromatogr A. 2017;1483:64–70.

    Article  CAS  Google Scholar 

  27. Sorribas S, Zornoza B, Serra-Crespo P, Gascon J, Kapteijn F, Téllez C, et al. Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al) core–shell spheres. Microporous Mesoporous Mater. 2016;225:116–21.

    Article  CAS  Google Scholar 

  28. Wan H, Chen C, Wu Z, Que Y, Feng Y, Wang W, et al. Encapsulation of heteropolyanion-based ionic liquid within the metal–organic framework MIL-100(Fe) for biodiesel production. ChemCatChem. 2015;7(3):441–9.

    Article  CAS  Google Scholar 

  29. Qu Q, Gao T, Zheng H, Li X, Liu H, Shen M, et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon. 2015;92:119–25.

    Article  CAS  Google Scholar 

  30. Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angew Chem Int Ed. 2015;127(51):15703–7.

    Article  Google Scholar 

  31. Ahmed I, Panja T, Khan NA, Sarker M, Yu JS, Jhung SH. Nitrogen-doped porous carbons from ionic liquids@MOF: remarkable adsorbents for both aqueous and nonaqueous media. ACS Appl Mater Interfaces. 2017;9(11):10276–85.

    Article  CAS  Google Scholar 

  32. Cheng G, Wang ZG, Denagamage S, Zheng SY. Graphene-templated synthesis of magnetic metal organic framework nanocomposites for selective enrichment of biomolecules. ACS Appl Mater Interfaces. 2016;8(16):10234–42.

    Article  CAS  Google Scholar 

  33. He Z, Liu D, Li R, Zhou Z, Wang P. Magnetic solid-phase extraction of sulfonylurea herbicides in environmental water samples by Fe3O4@dioctadecyl dimethyl ammonium chloride@silica magnetic particles. Anal Chim Acta. 2012;747(1):29–35.

    Article  CAS  Google Scholar 

  34. Li B, Liu Z, Han C, Wei M, Zhao S. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay. J Colloid Interface Sci. 2012;377(1):334–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Zhejiang Provincial Natural Science Foundation (LQ19B050001), Ningbo Municipal Natural Science Foundation (No. 2018A610404, No. 2016A610178), Ningbo Municipal Program for Leading and Top-Notch Talents, Zhejiang Provincial Program for Public Welfare of Technology Application Research Plan (No. 2015C31148), and the Opening Foundation of Key Laboratory of Emergency Detection for Public Health of Zhejiang Province for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengdong Pan.

Ethics declarations

Informed consents were obtained from three volunteers who donated urine samples. This was not a medical study in any form. Urine samples were used to optimize liquid chromatography-mass spectrometry analysis of Hp and HMME.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, X., Gao, G. & Pan, S. High-affinity graphene oxide-encapsulated magnetic Zr-MOF for pretreatment and rapid determination of the photosensitizers hematoporphyrin and hematoporphyrin monomethyl ether in human urine prior to UPLC-HRMS. Anal Bioanal Chem 410, 7749–7764 (2018). https://doi.org/10.1007/s00216-018-1391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1391-1

Keywords

Navigation