Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 29, pp 7739–7747 | Cite as

Drosophila melanogaster odorant receptors as volatile compound detectors in forensic science: a proof-of-concept study

  • Olivia LeitchEmail author
  • Chris Lennard
  • K. Paul Kirkbride
  • Alisha Anderson
Research Paper

Abstract

The ability to detect and identify substances based on the volatile compounds (odors) they emit is relied upon heavily for numerous investigative purposes. Animals have an innate olfactory sensitivity and selectivity that out-performs current instrumentation. This has led to immense interest in their employment as chemical sensors for a range of applications, including forensic science, both as whole organisms and as sensing elements in biosensors. Using electrophysiological and calcium imaging assays, this research examined the response of Drosophila melanogaster olfactory receptors (ORs) to odor compounds significant in forensic science and assessed their potential utility as volatile compound sensors. This investigation illustrated the different sensitivities, selectivities, and sensing features of individual ORs and demonstrated that their employment for detection purposes is feasible. While further research expanding on this study will be required to demonstrate the performance characteristics that an OR-based detection system will ultimately possess, this research provides an encouraging first step towards the goal of utilizing isolated biological ORs as volatile compound sensors in forensic science.

Keywords

Volatile organic compounds Olfactory receptors Vinegar fly Biosensors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1390_MOESM1_ESM.pdf (365 kb)
ESM 1 (PDF 365 kb)

References

  1. 1.
    Furton KG, Myers GS. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta. 2001;54(3):487–500.CrossRefGoogle Scholar
  2. 2.
    Oesterhelweg L, Kröber S, Rottmann K, Willhöft J, Braun C, Theis N, et al. Cadaver dogs - a study on detection of contaminated carpet squares. Forensic Sci Int. 2008;174(1):35–9.CrossRefGoogle Scholar
  3. 3.
    Williams M, Johnston J. Training and maintaining the performance of dogs (Canis familiaris) on an increasing number of odor discriminations in a controlled setting. Appl Anim Behav Sci. 2002;78(1):55–65.CrossRefGoogle Scholar
  4. 4.
    Poling A, Weetjens BJ, Cox C, Beyene NW, Sully A. Using giant African pouched rats (Cricetomys gambianus) to detect landmines. Psychol Rec. 2010;60(4):715–28.CrossRefGoogle Scholar
  5. 5.
    Rodacy PJ, Bender S, Bromenshenk JJ, Henderson CB, Bender G. Training and deployment of honeybees to detect explosives and other agents of harm. Proc SPIE Int Soc Opt Eng2002. p. 474-81.Google Scholar
  6. 6.
    Tomberlin JK, Rains GC, Sanford MR. Development of Microplitis croceipes as a biological sensor. Entomol Exp Appl. 2008;128(2):249–57.  https://doi.org/10.1111/j.1570-7458.2008.00743.x.CrossRefGoogle Scholar
  7. 7.
    Leitch O, Anderson A, Kirkbride KP, Lennard C. Biological organisms as volatile compound detectors: a review. Forensic Sci Int. 2013;232(1–3):92–103.CrossRefGoogle Scholar
  8. 8.
    Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.CrossRefGoogle Scholar
  9. 9.
    Leitch O. An assessment of biological sensors for the detection of volatile compounds of forensic significance [Doctoral Thesis]. Canberra, ACT: University of Canberra; 2014.Google Scholar
  10. 10.
    Mitsuno H, Sakurai T, MNamiki S, Mitsuhashi H, Kanzaki R. Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron. 2015;65:287–94.  https://doi.org/10.1016/j.bios.2014.10.026.CrossRefPubMedGoogle Scholar
  11. 11.
    Termtanasombat M, Mitsuno H, Misawa N, Yamahira S, Sakurai T, Yamaguchi S, et al. Cell-based odorant senor array for odor discrimination based on insect odorant receptors. J Chem Ecol. 2016;42(7):716–24.  https://doi.org/10.1007/s10886-016-0726-7.CrossRefPubMedGoogle Scholar
  12. 12.
    Liao C, Gock A, Michie M, Morton B, Anderson A, Trowell S. Behavioural and genetic evidence for C. elegans’ ability to detect volatile chemicals associated with explosives. PLoS One. 2010;5(9):e12615.  https://doi.org/10.1371/journal.pone.0012615.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marshall B, Warr CG, de Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses. 2010;35(7):613–25.  https://doi.org/10.1093/chemse/bjq050.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Hee Ha J, Dhanasekaran DN. Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol. 2007;3(6):325–30.  https://doi.org/10.1038/nchembio882.CrossRefPubMedGoogle Scholar
  15. 15.
    Berna AA, Anderson AR, Trowell SC. Bio-benchmarking of electronic nose sensors. PLoS One. 2009;4(7):1–9.CrossRefGoogle Scholar
  16. 16.
    Macais MS, Guerra-Diaz P, Almirall JR, Furton KG. Detection of piperonal emitted from polymer controlled odor mimic permeation systems utilizing Canis familiaris and solid phase microextraction-ion mobility spectrometry. Forensic Sci Int. 2010;195(1):132–8.CrossRefGoogle Scholar
  17. 17.
    Rains GC, Tomberlin JK, D’ Alessandro M, Lewis WJ. Limits of volatile chemical detection of a parasitoid wasp, Microplitis croceipes, and an electronic nose: a comparative study. Trans ASAE. 2004;47(6):2145–52.CrossRefGoogle Scholar
  18. 18.
    Helfand S, Carlson JR. Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. Proc Natl Acad Sci. 1989;86(8):2908–12.CrossRefGoogle Scholar
  19. 19.
    ASTM Standard E1618, 2011, Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. ASTM International: West Conshohocken, PA.Google Scholar
  20. 20.
    Almirall JR, Furton KG. Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. J Anal Appl Pyrolysis. 2004;71(1):51–67.CrossRefGoogle Scholar
  21. 21.
    Curran AM, Ramirez CF, Schoon AA, Furton KG. The frequency of occurence and discriminatory power of compounds found in human scent accross a population determined by SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;846(1–2):86–97.CrossRefGoogle Scholar
  22. 22.
    Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA. Characterisation of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int. 2009;186(1):6–13.CrossRefGoogle Scholar
  23. 23.
    Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA. Odor analysis of decomposing buried human remains. J Forensic Sci. 2008;53(2):384–91.CrossRefGoogle Scholar
  24. 24.
    Galizia CG, Münch D, Strauch M, Nissler A, Ma S. Intergrating heterogeneous odor response data into a common response model: a DoOR to the complete olfactome. Chem Senses. 2010;35(7):551–63.CrossRefGoogle Scholar
  25. 25.
    Hallem E, Carlson J. Coding of odors by a receptor repertoire. Cell. 2006;125(1):143–60.CrossRefGoogle Scholar
  26. 26.
    Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods. 2007;159(2):189–94.CrossRefGoogle Scholar
  27. 27.
    Anderson AR, Wanner KW, RTrowell SC, Warr CG, Jaquin-Joly E, Zagatti P, et al. Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochem Mol Biol. 2009;39(3):189–97.CrossRefGoogle Scholar
  28. 28.
    Große-Wilde E, Svatos A, Krieger J. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses. 2006;31(6):547–55.CrossRefGoogle Scholar
  29. 29.
    Jordon MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SDG, et al. Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses. 2009;34(5):383–94.CrossRefGoogle Scholar
  30. 30.
    Lentini JJ. Scientific protocols for fire investigation. Boca Raton: CRC Press Taylor & Francis Group; 2006.CrossRefGoogle Scholar
  31. 31.
    Besansky NJ, Hill CA, Costanitini C. No accounting for taste: host preference in malaria vectors. Trends Parasitol. 2004;20(6):249–51.CrossRefGoogle Scholar
  32. 32.
    Dacres H, Wang J, Leitch V, Horne I, Anderson AR, Trowell SC. Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET). Biosens Bioelectron. 2011;29(1):119–24.  https://doi.org/10.1016/j.bios.2011.08.004.CrossRefPubMedGoogle Scholar
  33. 33.
    Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. Odor coding by a mammalian receptor repertoire. Sci Signal. 2009;2(60):ra9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Olivia Leitch
    • 1
    • 2
    • 3
    Email author
  • Chris Lennard
    • 1
    • 4
  • K. Paul Kirkbride
    • 5
  • Alisha Anderson
    • 2
  1. 1.National Centre for Forensic StudiesUniversity of CanberraCanberraAustralia
  2. 2.CSIRO Health and BiosecurityCanberraAustralia
  3. 3.School of Mathematical and Physical SciencesUniversity of Technology SydneyUltimoAustralia
  4. 4.School of Science and HealthWestern Sydney UniversityPenrithAustralia
  5. 5.The College of Science and EngineeringFlinders UniversityBedford ParkAustralia

Personalised recommendations