Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 29, pp 7655–7661 | Cite as

A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV

  • Haicong Shen
  • Hui Chen
  • Zhenzhu Cheng
  • Lei Ma
  • Liping Huang
  • Meng Xiao
  • Wei Xiao
  • Kaixin Xie
  • Yong TangEmail author
Research Paper

Abstract

Pseudorabies virus (PRV) is an acute and thermal infectious disease in domestic animals. Pigs are a main source of PRV infection, which causes high mortality rates for newborn infected piglets and high miscarriage rates for infected adults. Therefore, early control of PRV is necessary to avoid significant economic loss. We have developed a novel fluorescent immunochromatographic strip (F-ICS) for rapid, sensitive, and specific detection of PRV with a limit of detection (LOD) of 0.13 ng mL−1 and a detection linear range (DLR) between 0.13 and 2.13 ng mL−1. The detection limit was about 10 times lower than the colloidal gold strip. In tests of clinical samples, the F-ICS was largely consistent with PCR results, indicating its practical clinical application. In addition, for easy observation of the F-ICS signal by eye, we present a matching 3D-printed pocket fluorescence observation instrument (PFOI) that allows for use of the F-ICS in the field as easily as conventional colloidal gold strips.

Graphical Abstract

Keywords

Pseudorabies virus Fluorescent immunochromatographic strip 3D printing Pocket fluorescence observation instrument 

Notes

Funding information

This work was supported by the National key Research and Development Program of China (2016YFD0500600).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1379_MOESM1_ESM.pdf (732 kb)
ESM 1 (PDF 732 kb)

References

  1. 1.
    Mettenleiter TC. Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis--state of the art, June 1999. Vet Res. 2000;31(1):99–115.  https://doi.org/10.1051/vetres:2000059.CrossRefPubMedGoogle Scholar
  2. 2.
    Sun Y, Luo Y, Wang CH, Yuan J, Li N, Song K, et al. Control of swine pseudorabies in China: opportunities and limitations. Vet Microbiol. 2016;183:119–24.  https://doi.org/10.1016/j.vetmic.2015.12.008.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang R, Xu A, Qin C, Zhang Q, Chen S, Lang Y, Wang M, Li C, Feng W, Zhang R, Jiang Z, Tang J (2017) Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response. J Virol 91 (21).  https://doi.org/10.1128/JVI.01148-17.
  4. 4.
    Fonseca AA Jr, Camargos MF, de Oliveira AM, Ciacci-Zanella JR, Patricio MA, Braga AC, et al. Molecular epidemiology of Brazilian pseudorabies viral isolates. Vet Microbiol. 2010;141(3–4):238–45.  https://doi.org/10.1016/j.vetmic.2009.09.018.CrossRefPubMedGoogle Scholar
  5. 5.
    Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol R. 2005;69(3):462–500.  https://doi.org/10.1128/MMBR.69.3.462-500.2005.CrossRefGoogle Scholar
  6. 6.
    Pedersen K, Bevins SN, Baroch JA, Cumbee JC Jr, Chandler SC, Woodruff BS, et al. Pseudorabies in feral swine in the United States, 2009-2012. J Wildlife Dis. 2013;49(3):709–13.  https://doi.org/10.7589/2012-12-314.CrossRefGoogle Scholar
  7. 7.
    Egawa K, Shimojima M, Taniguchi S, Nagata N, Tani H, Yoshikawa T, et al. Virulence, pathology, and pathogenesis of Pteropine orthoreovirus (PRV) in BALB/c mice: development of an animal infection model for PRV. Plos Neglect Trop D. 2017;11(12):e0006076.  https://doi.org/10.1371/journal.pntd.0006076.CrossRefGoogle Scholar
  8. 8.
    Klupp BG, Hengartner CJ, Mettenleiter TC, Enquist LW. Complete, annotated sequence of the pseudorabies virus genome. J Virol. 2003;78(1):424–40.  https://doi.org/10.1128/jvi.78.1.424-440.2004.CrossRefGoogle Scholar
  9. 9.
    Tang YD, Liu JT, Wang TY, Sun MX, Tian ZJ, Cai XH. Comparison of pathogenicity-related genes in the current pseudorabies virus outbreak in China. Sci Rep-UK. 2017;7(1):7783.  https://doi.org/10.1038/s41598-017-08269-3.CrossRefGoogle Scholar
  10. 10.
    Vrublevskaya VV, Afanasyev VN, Grinevich AA, Skarga YY, Gladyshev PP, Ibragimova SA, et al. A sensitive and specific lateral flow assay for rapid detection of antibodies against glycoprotein B of Aujeszky’s disease virus. J Virol Methods. 2017;249:175–80.  https://doi.org/10.1016/j.jviromet.2017.09.012.CrossRefPubMedGoogle Scholar
  11. 11.
    Lokensgard JR, Thawley DG, Molitor TW. Enzymatic amplification of latent pseudorabies virus nucleic acid sequences. J Virol Methods. 1991;34(1):45–55.  https://doi.org/10.1016/0166-0934(91)90120-o.CrossRefPubMedGoogle Scholar
  12. 12.
    Zanella EL, Miller LC, Lager KM, Bigelow TT. Evaluation of a real-time polymerase chain reaction assay for pseudorabies virus surveillance purposes. J Vet Diagn Invest. 2012;24(4):739–45.  https://doi.org/10.1177/1040638712447279.CrossRefPubMedGoogle Scholar
  13. 13.
    Sayler KA, Bigelow T, Koster LG, Swenson S, Bounds C, Hernandez F, et al. Development of a rapid, simple, and specific real-time PCR assay for detection of pseudorabies viral DNA in domestic swine herds. J Vet Diagn Invest. 2017;29(4):522–8.  https://doi.org/10.1177/1040638717706593.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Liu L, Wang J, Pang X, Yuan W. Real-time RPA assay for rapid detection and differentiation of wild-type pseudorabies and gE-deleted vaccine viruses. Anal Biochem. 2018;543:122–7.  https://doi.org/10.1016/j.ab.2017.12.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Ren M, Lin H, Chen S, Yang M, An W, Wang Y, et al. Detection of pseudorabies virus by duplex droplet digital PCR assay. J Vet Diagn Invest. 2018;30(1):105–12.  https://doi.org/10.1177/1040638717743281.CrossRefPubMedGoogle Scholar
  16. 16.
    Ao J-q, Wang J-w, Chen X-h, Wang X-z, Long Q-X. Expression of pseudorabies virus gE epitopes in Pichia pastoris and its utilization in an indirect PRV gE-ELISA. J Virol Methods. 2003;114(2):145–50.  https://doi.org/10.1016/j.jviromet.2003.09.012.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu CY, Wu CW, Liao CM, Chien MS, Huang C. Enhancing expression of the pseudorabies virus glycoprotein E in yeast and its application in an indirect sandwich ELISA. J Appl Microbiol. 2017;123(3):594–601.  https://doi.org/10.1111/jam.13531.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang CF, Cui SJ, Zhu C. Loop-mediated isothermal amplification for rapid detection and differentiation of wild-type pseudorabies and gene-deleted virus vaccines. J Virol Methods. 2010;169(1):239–43.  https://doi.org/10.1016/j.jviromet.2010.07.034.CrossRefPubMedGoogle Scholar
  19. 19.
    Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, et al. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B. 2017;5(26):5079–91.  https://doi.org/10.1039/c7tb01049d.CrossRefGoogle Scholar
  20. 20.
    Zhang B, Ma WJ, Li FX, Gao WC, Zhao Q, Peng WP, et al. Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale. 2017;9(47):18711–22.  https://doi.org/10.1039/c7nr06781j.CrossRefPubMedGoogle Scholar
  21. 21.
    Xiao M, Fu Q, Shen H, Chen Y, Xiao W, Yan D, et al. A turn-on competitive immunochromatographic strips integrated with quantum dots and gold nano-stars for cadmium ion detection. Talanta. 2018;178:644–9.  https://doi.org/10.1016/j.talanta.2017.10.002.CrossRefPubMedGoogle Scholar
  22. 22.
    Wu Z, Shen H, Hu J, Fu Q, Yao C, Yu S, et al. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal Bioanal Chem. 2017;409(22):5209–16.  https://doi.org/10.1007/s00216-017-0491-7.CrossRefPubMedGoogle Scholar
  23. 23.
    Shen H, Zhang S, Fu Q, Xiao W, Wang S, Yu S, et al. A membrane-based fluorescence-quenching immunochromatographic sensor for the rapid detection of tetrodotoxin. Food Control. 2017;81:101–6.  https://doi.org/10.1016/j.foodcont.2017.06.001.CrossRefGoogle Scholar
  24. 24.
    Shen H, Xu F, Xiao M, Fu Q, Cheng Z, Zhang S, et al. A new lateral-flow immunochromatographic strip combined with quantum dot nanobeads and gold nanoflowers for rapid detection of tetrodotoxin. Analyst. 2017;142(23):4393–8.  https://doi.org/10.1039/c7an01227f.CrossRefPubMedGoogle Scholar
  25. 25.
    Fu Q, Tang Y, Shi C, Zhang X, Xiang J, Liu X. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosens Bioelectron. 2013;49:399–402.  https://doi.org/10.1016/j.bios.2013.04.048.CrossRefPubMedGoogle Scholar
  26. 26.
    Gross B, Lockwood SY, Spence DM. Recent advances in analytical chemistry by 3D printing. Anal Chem. 2017;89(1):57–70.  https://doi.org/10.1021/acs.analchem.6b04344.CrossRefPubMedGoogle Scholar
  27. 27.
    Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. Lab Chip. 2017;17(16):2713–39.  https://doi.org/10.1039/c7lc00397h.CrossRefPubMedGoogle Scholar
  28. 28.
    Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 2016;45(10):2740–55.CrossRefGoogle Scholar
  29. 29.
    Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312.  https://doi.org/10.1038/nbt.3413 https://www.nature.com/articles/nbt.3413#supplementary-information.CrossRefPubMedGoogle Scholar
  30. 30.
    Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18):3627.CrossRefGoogle Scholar
  31. 31.
    Knowlton S, Joshi A, Syrrist P, Coskun AF, Tasoglu S. 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip. 2017;17(16):2839–51.  https://doi.org/10.1039/c7lc00706j.CrossRefPubMedGoogle Scholar
  32. 32.
    Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. 2016;20(3):50.CrossRefGoogle Scholar
  33. 33.
    Au AK, Huynh W, Horowitz LF, Folch A. 3D-printed microfluidics. Angew Chem Int Edit. 2016;55(12):3862–81.CrossRefGoogle Scholar
  34. 34.
    Lupton D (2015) Donna Haraway: the digital cyborg assemblage and the new digital health technologies. Palgrave Macmillan UK,Google Scholar
  35. 35.
    Baden T, Chagas AM, Gage GJ, Marzullo TC, Prieto-Godino LL, Euler T (2015) Open Labware: 3-D Printing Your Own Lab Equipment (vol 13, e1002086, 2015). PLoS Biol 13 (5).  https://doi.org/10.1371/journal.pbio.1002175 CrossRefGoogle Scholar
  36. 36.
    Su CK, Peng PJ, Sun YC. Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater. Anal Chem. 2015;87(13):6945–50.CrossRefGoogle Scholar
  37. 37.
    Chen Y, Fu Q, Li D, Xie J, Ke D, Song Q, et al. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem. 2017;409(28):6567–74.  https://doi.org/10.1007/s00216-017-0605-2.CrossRefPubMedGoogle Scholar
  38. 38.
    Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, Bormann CL, Draz MS, Petrozza JC, Shafiee H (2017) An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 9 (382).  https://doi.org/10.1126/scitranslmed.aai7863.CrossRefGoogle Scholar
  39. 39.
    Xiao W, Huang C, Xu F, Yan J, Bian H, Fu Q, et al. A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips. Sensor Actuat B-Chem. 2018;266:63–70.  https://doi.org/10.1016/j.snb.2018.03.110.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haicong Shen
    • 1
  • Hui Chen
    • 1
  • Zhenzhu Cheng
    • 2
  • Lei Ma
    • 3
  • Liping Huang
    • 1
  • Meng Xiao
    • 1
  • Wei Xiao
    • 1
  • Kaixin Xie
    • 1
  • Yong Tang
    • 1
    • 4
    Email author
  1. 1.Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody drug and ImmunoassayJinan UniversityGuangzhouChina
  2. 2.College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
  3. 3.Wuhan Keqian Biology Co., LtdWuhanChina
  4. 4.Institute of Food Safety and NutritionJinan UniversityGuangzhouChina

Personalised recommendations