Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 29, pp 7635–7643 | Cite as

Silica-supported pyrolyzed lignin for solid-phase extraction of rare earth elements from fresh and sea waters followed by ICP-MS detection

  • Federica Maraschi
  • Andrea SpeltiniEmail author
  • Tiziana Tavani
  • Maria Grazia Gulotta
  • Daniele Dondi
  • Chiara Milanese
  • Mirko Prato
  • Antonella Profumo
  • Michela SturiniEmail author
Research Paper

Abstract

Silica-supported pyrolyzed lignin (pLG@silica) was investigated as a solid sorbent for the pre-concentration of rare earth elements (REE) from natural waters followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis. The carbon-based material was easily prepared by pyrolytic treatment of lignin at 600 °C after its adsorption onto silica micro-particles. pLG@silica was characterized by scanning electron microscopy (SEM), surface area measurements (BET method), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), point of zero charge measurement, and X-ray photoelectron spectroscopy (XPS). The as-prepared material (50 mg) was tested as fixed-bed sorbent for the solid-phase extraction (SPE) of tap, river, and sea water samples spiked with REE in the 10–150 ng L−1 range, followed by ICP-MS analysis. A quantitative adsorption was observed for all REE with recoveries in the range of 72–118%. A suitable inter-day precision (RSDs 5–12%, n = 3) was obtained. Sample volumes up to 250 mL provided enrichment factors up to 100. The method detection and quantification limits (MDLs and MQLs) were in the range of 0.4–0.6 ng L−1 and 1–2 ng L−1, respectively. The batch-to-batch reproducibility was verified on four pLG@silica independent preparations. As remarkable advantages, pLG@silica proved to be of easy preparation using a waste material, inexpensive, and reusable for at least 20 SPE cycles.

Keywords

Pyrolyzed lignin Rare earth elements Natural waters Solid-phase extraction ICP-MS 

Notes

Acknowledgements

The Authors are grateful to Dr. Alessandro Girella for IR and Sem mesurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1376_MOESM1_ESM.pdf (112 kb)
ESM 1 (PDF 111 KB)

References

  1. 1.
    Speltini A, Sturini M, Maraschi F, Profumo A. Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ Anal Chem. 2016;10:11–23.CrossRefGoogle Scholar
  2. 2.
    Sitko R, Zawisza B, Talik E, Janik P, Osoba G, Feist B, et al. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis. Anal Chim Acta. 2014;834:22–9.CrossRefGoogle Scholar
  3. 3.
    Wang X, Liu B, Lu Q, Qu Q. Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A. 2014;1362:1–15.CrossRefGoogle Scholar
  4. 4.
    Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM, Otárola-Jiménez J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review. Anal Chim Acta. 2015;892:10–26.CrossRefGoogle Scholar
  5. 5.
    Speltini A, Merli D, Dondi D, Paganini G, Profumo A. Improving selectivity in gas chromatography by chemically-modified multi-walled carbon nanotubes as stationary phase. Anal Bioanal Chem. 2012;403:1157–65.CrossRefGoogle Scholar
  6. 6.
    Speltini A, Merli D, Profumo A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal Chim Acta. 2013;783:1–16.CrossRefGoogle Scholar
  7. 7.
    Zhang M, Qiu H. Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography. Trends Anal Chem. 2015;65:107–21.CrossRefGoogle Scholar
  8. 8.
    Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere. 2018;195:351–64.CrossRefGoogle Scholar
  9. 9.
    Peng W, Li H, Liu Y, Song S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq. 2017;230:496–504.CrossRefGoogle Scholar
  10. 10.
    Yu JG, Yu LY, Yang H, Liua Q, Chen XH, Jiang XY, et al. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ. 2015;502:70–9.CrossRefGoogle Scholar
  11. 11.
    US Environmental Protection Agency. Rare earth elements: a review of production, processing, recycling, and associated environmental issues. EPA 600/R-12/572; 2012.Google Scholar
  12. 12.
    Pyrzynska K, Kubiak A, Wysock I. Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta. 2016;154:15–22.CrossRefGoogle Scholar
  13. 13.
    Fisher A, Kara D. Determination of rare earth elements in natural water samples - a review of sample separation, preconcentration and direct methodologies. Anal Chim Acta. 2016;935:1–29.CrossRefGoogle Scholar
  14. 14.
    Zaichick S, Zaichick V, Karandashev V, Nosenko S. Accumulation of rare earth elements in human bone within the lifespan. Metallomics. 2011;3:186–94.CrossRefGoogle Scholar
  15. 15.
    Porru S, Placidi D, Quarta C, Sabbioni E, PietraR FS. The potential role of rare earths in the pathogenesis of interstitial lung disease: a case report of movie projectionist as investigated by neutron activation analysis. J Trace Elem Med Biol. 2001;14:232–6.CrossRefGoogle Scholar
  16. 16.
    Zhang H, Feng J, Zhu WF, Liu CQ, Xu SQ, Shao PP, et al. Chronic toxicity of rare-earth elements on human beings: implications of blood biochemical indices in REE-high regions, South Jiangxi. Biol Trace Elem Res. 2000;73(1):17.Google Scholar
  17. 17.
    Pagano G, Guida M, Tommasi F, Oral R. Health effects and toxicity mechanisms of rare earth elements - knowledge gaps and research prospects. Ecotoxicol Environ Saf. 2015;115:40–8.CrossRefGoogle Scholar
  18. 18.
    Jerez J, Isaguirre AC, Bazan C, Martinez LD, Cerutti S. Determination of scandium in acid mine drainage by ICP-OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes. Talanta. 2014;124:89–94.CrossRefGoogle Scholar
  19. 19.
    Cho J, Chung KW, Choi MS, Kim J. Analysis of rare earth elements in seawater by inductively coupled plasma mass spectrometry after pre-concentration using TSK™-HD-MW-CNTs (highly dispersive multi-walled carbon nanotubes). Talanta. 2012;99:369–74.CrossRefGoogle Scholar
  20. 20.
    Liang P, Liu Y, Guo L. Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim Acta Part B. 2005;60:125–9.CrossRefGoogle Scholar
  21. 21.
    Zhang J, Cheng R, Tong S, Gu X, Quan X, Liu Y, et al. Microwave plasma torch-atomic emission spectrometry for the on-line determination of rare earth elements based on flow injection preconcentration by TiO2-graphene composite. Talanta. 2011;86:114–20.CrossRefGoogle Scholar
  22. 22.
    Su S, Chen B, He M, Hu B, Xiao Z. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyanilineegraphene oxide composite. Talanta. 2014;119:458–66.CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhong C, Zhang Q, Chen B, He M, Hu B. Graphene oxide TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Adv. 2015;5:5996–6005.CrossRefGoogle Scholar
  24. 24.
    Agrawal YK. Poly(b-Styryl)-(1,2-methanofullerene-C60)-61-formo hydroxamic acid for the solid phase extraction, separation and preconcentration of rare earth elements, fullerenes, nanotubes. Carbon Nanostruct. 2007;15:353–65.CrossRefGoogle Scholar
  25. 25.
    Li Z, Ge Y, Wan L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Hazard Mater. 2015;285:77–83.CrossRefGoogle Scholar
  26. 26.
    Paris O, Zollfrank C, Zickler GA. Decomposition and carbonisation of wood biopolymers–a microstructural study of softwood pyrolysis. Carbon. 2005;43:53–66.CrossRefGoogle Scholar
  27. 27.
    Vadivel D, Speltini A, Zeffiro A, Bellani V, Pezzini S, Buttafava A, et al. Reactive carbons from Kraft lignin pyrolysis: stabilization of peroxyl radicals at carbon/silica interface. J Anal App Pyrol. 2017;128:346–52.CrossRefGoogle Scholar
  28. 28.
    Poo KM, Son EB, Chang JS, Ren X, Choi YJ. ChaemKJ. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manag. 2018;206:364–72.CrossRefGoogle Scholar
  29. 29.
    Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrol. 2008;82:170–7.CrossRefGoogle Scholar
  30. 30.
    Dondi D, Zeffiro A, Speltini A, Tomasi C, Vadivel D, Buttafava A. The role of inorganic sulfur compounds in the pyrolysis of Kraft lignin. J Anal Appl Pyrol. 2014;107:53–8.CrossRefGoogle Scholar
  31. 31.
    Baumlin S, Broust F, Bazer-Bachi F, Bourdeaux T, Herbinet O, Ndiaye FT, et al. Production of hydrogen by lignins fast pyrolysis. Int J Hydrog Energy. 2006;31:2179–92.CrossRefGoogle Scholar
  32. 32.
    Speltini A, Sturini M, Maraschi F, Mandelli E, Vadivel D, Dondi D, et al. Preparation of silica-supported carbon by Kraft lignin pyrolysis, and its use in solid-phase extraction of fluoroquinolones from environmental waters. Microchim Acta. 2016;183:2241–9.CrossRefGoogle Scholar
  33. 33.
    Fiol N, Villaescusa I. Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett. 2009;7:79–84.CrossRefGoogle Scholar
  34. 34.
    Zhang H, Yu B, Zhou W, Liu X, Chen F. High-value utilization of eucalyptus Kraft lignin: preparation and characterization as efficient dye dispersant. I J Biol Macromol. 2018;109:1232–8.CrossRefGoogle Scholar
  35. 35.
    Liu F, Chen Y, Gao J. Preparation and characterization of biobased graphene from Kraft lignin. BioResources. 2017;12:6545–57.Google Scholar
  36. 36.
    Pourret O, Houben D. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon. 2018;4:e00543.  https://doi.org/10.1016/j.heliyon.2018.e00543.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kaciulis S. Spectroscopy of carbon: from diamond to nitride films. Surf Interface Anal. 2012;44:1155–61.CrossRefGoogle Scholar
  38. 38.
    Miszta K, Greullet F, Marras S, Prato M, Toma A, Arciniegas M, et al. Nanocrystal film patterning by inhibiting cation exchange via electron-beam or X-ray lithography. Nano Lett. 2014;14:2116–22.CrossRefGoogle Scholar
  39. 39.
    Turgeon S, Paynter RW. On the determination of carbon sp2/sp3 ratios in polystyrene–polyethylene copolymers by photoelectron spectroscopy. Thin Solid Films. 2001;394:44–8.CrossRefGoogle Scholar
  40. 40.
    Lesiak B, Zemek J, Houdkova J, Jiricek P, Jóźwik A. XPS and XAES of polyethylenes aided by line shape analysis: the effect of electron irradiation. Polym Degrad Stab. 2009;94:1714–21.CrossRefGoogle Scholar
  41. 41.
    Puigdomenech I. MEDUSA: make equilibrium diagram using sophisticated algorithms. Stockholm: Windows program; 2001. vers 21 Aug 2001Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Federica Maraschi
    • 1
  • Andrea Speltini
    • 1
    Email author
  • Tiziana Tavani
    • 1
  • Maria Grazia Gulotta
    • 1
  • Daniele Dondi
    • 1
  • Chiara Milanese
    • 1
  • Mirko Prato
    • 2
  • Antonella Profumo
    • 1
  • Michela Sturini
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of PaviaPaviaItaly
  2. 2.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations