Skip to main content
Log in

A novel molecularly imprinted sensor for imidacloprid pesticide based on poly(levodopa) electro-polymerized/TiO2 nanoparticles composite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This research reports the first application of poly(levodopa) in the development of a molecularly imprinted sensor. A novel electrochemical sensor with high selectivity and sensitivity was developed for imidacloprid (IMD) determination based on an imprinted poly(levodopa) electro-polymerized on electrodeposited TiO2 nanoparticles (TiO2NPs) modified glassy carbon electrode (GCE). High affinity of IMD imprinted poly(levodopa) to IMD provided a very selective response of the electrode to IMD and electrodeposited TiO2NPs at the electrode surface resulted in the electrocatalytic reduction of IMD and consequently high sensitivity of the modified electrode. IMD imprinted poly(levodopa) electro-polymerized on TiO2NPs was well characterized by FT-IR, SEM, and EDX techniques. Sensor response to IMD was investigated by using square wave voltammetry (SWV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The sensor showed a really vast linear range of 2–400 μM, completely low detection limit (LoD) of 0.3 μM, and limit of quantitation (LoQ) of 1 μM by SWV measurements that are very acceptable in comparison to other reported IMD sensors. Sensor application in real samples for IMD determination showed good applicability of the developed sensor. Response time is very short and the sensor showed suitable repeatability and stability after use several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Majidi MR, Baj RFB, Bamorowat M. Ionic liquid modified carbon-ceramic electrode with structure similar to graphene nanoplatelets: application to imidacloprid determination in some agricultural products. Measurement. 2016;93:29–35.

    Article  Google Scholar 

  2. Kobashi K, Harada T, Adachi Y, Mori M, Ihara M, Hayasaka D. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol Environ Saf. 2017;138:122–9.

    Article  CAS  Google Scholar 

  3. Xia X, Xia X, Huo W, Dong H, Zhang L, Chang Z. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environ Toxicol Pharmacol. 2016;45:132–9.

    Article  CAS  Google Scholar 

  4. Jeria Y, Bazaes A, Báez ME, Espinoza J, Martínez J, Fuentes E. Photochemically induced fluorescence coupled to second-order multivariate calibration as analytical tool for determining imidacloprid in honeybees. Chemom Intell Lab Syst. 2017;160:1–7.

    Article  CAS  Google Scholar 

  5. Zhang Y, Yang Y, Sun H, Liu Z. Metabolic imidacloprid resistance in the brown planthopper, nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochem Mol Biol. 2016;79:50–6.

    Article  CAS  Google Scholar 

  6. Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, et al. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron. 2016;75:88–95.

    Article  Google Scholar 

  7. Zheng Q, Niu Y, Li H. Synthesis and characterization of imidacloprid microspheres for controlled drug release study. React Funct Polym. 2016;106:99–104.

    Article  CAS  Google Scholar 

  8. Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens Actuators B Chem. 2015;220:216–21.

    Article  CAS  Google Scholar 

  9. Kumaravel A, Chandrasekaran M. Electrochemical determination of imidacloprid using nanosilver Nafion®/nanoTiO2 Nafion® composite modified glassy carbon electrode. Sens. Actuators, B Chem. 2011;158:319–26.

    Article  CAS  Google Scholar 

  10. Lei W, Han Z, Si W, Hao Q, Zhang Y, Xia M, et al. Sensitive and selective detection of imidacloprid by graphene-oxide-modified glassy carbon electrode. Chem Aust. 2014;1:1063–7.

    CAS  Google Scholar 

  11. Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, et al. Electrochemical determination of imidacloprid using poly (carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sens. Actuators, B Chem. 2013;183:102–9.

    Article  CAS  Google Scholar 

  12. Si W, Han Z, Lei W, Wu Q, Zhang Y, Xia M, et al. Fast electrochemical determination of imidacloprid at an activated glassy carbon electrode. J Electrochem Soc. 2014;161:B9–B13.

    Article  CAS  Google Scholar 

  13. Brahim MB, Ammar HB, Abdelhédi R, Samet Y. Electrochemical behavior and analytical detection of imidacloprid insecticide on a BDD electrode using square-wave voltammetric method. Chin Chem Lett. 2016;27:666–72.

    Article  Google Scholar 

  14. Kumaravel A, Chandrasekaran M. Electrochemical determination of chlorpyrifos on a nano-TiO2/cellulose acetate composite modified glassy carbon electrode. J Agric Food Chem. 2015;63:6150–6.

    Article  CAS  Google Scholar 

  15. Jiang H, Jiang D, Shao J, Sun X. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron. 2016;75:411–9.

    Article  CAS  Google Scholar 

  16. Shoji R, Takeuchi T, Kubo I. Atrazine sensor based on molecularly imprinted polymer-modified gold electrode. Anal Chem. 2003;75:4882–6.

    Article  CAS  Google Scholar 

  17. Lian W, Liu S, Yu J, Xing X, Li J, Cui M, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron. 2012;38:163–9.

    Article  CAS  Google Scholar 

  18. Do MH, Florea A, Farre C, Bonhomme A, Bessueille F, Vocanson F, et al. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem. 2015;95:1489–501.

    Article  CAS  Google Scholar 

  19. Introna B, Mazzotta E, Turco A, Malitesta C, Mohammadi R, Ramezany F, et al. Electrochemical detection of serotonin using polyethylenedioxythiophene and core-shell molecularly imprinted polymer nanoparticles. SENSORS, 2014 IEEE, IEEE2014, pp. 309–312.

  20. Zaidi SA, Shin JH. Molecularly imprinted polymer electrochemical sensors based on synergistic effect of composites synthesized from graphene and other nanosystems. Int J Electrochem Sci. 2014;9:4598–616.

    Google Scholar 

  21. Rezaei B, Foroughi-Dehnavi S, Ensafi AA. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics. 2015;21:2969–80.

    Article  CAS  Google Scholar 

  22. Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3:7437–44.

    Article  CAS  Google Scholar 

  23. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, et al. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sensors. 2018;3:378–85.

    Article  CAS  Google Scholar 

  24. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron. 2018;112:54–71.

    Article  CAS  Google Scholar 

  25. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    Article  CAS  Google Scholar 

  26. Jiang LC, Zhang WD. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis. 2009;21:988–93.

    Article  CAS  Google Scholar 

  27. Vetrivel V, Rajendran K, Kalaiselvi V. Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int J Chem Tech Res. 2015;7:1090–7.

    Google Scholar 

  28. Wang Z, Jiang T, Du Y, Chen K, Yin H. Synthesis of mesoporous titania and the photocatalytic activity for decomposition of methyl orange. Mater Lett. 2006;60:2493–6.

    Article  CAS  Google Scholar 

  29. Gao Z, Pang L, Feng H, Wang S, Wang Q, Wang M, et al. Preparation and characterization of a novel imidacloprid microcapsule via coating of polydopamine and polyurea. RSC Adv. 2017;7:15762–8.

    Article  CAS  Google Scholar 

  30. Quintás G, Armenta S, Garrigues S, Guardia MDL. Fourier transform infrared determination of imidacloprid in pesticide formulations. J Braz Chem Soc. 2004;15:307–12.

    Article  Google Scholar 

  31. Tan JM, Foo JB, Fakurazi S, Hussein MZ. Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes. Beilstein J Nanotechnol. 2015;6:243–53.

    Article  Google Scholar 

  32. Kura AU, Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomedicine. 2013;8:1103–10.

    Article  Google Scholar 

  33. Behnajady M, Eskandarloo H, Modirshahla N, Shokri M. Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination. 2011;278:10–7.

    Article  CAS  Google Scholar 

  34. Papp Z, Švancara I, Guzsvány V, Vytřas K, Gaál F. Voltammetric determination of imidacloprid insecticide in selected samples using a carbon paste electrode. Microchim Acta. 2009;166:169–75.

    Article  CAS  Google Scholar 

  35. Navalón A, El-Khattabi R, González-Casado A, Vilchez JL. Differential-pulse polarographic determination of the insecticide imidacloprid in commercial formulations. Microchim Acta. 1999;130:261–5.

    Article  Google Scholar 

  36. Guzsvány V, Kádár M, Papp Z, Bjelica L, Gaál F, Toth K. Monitoring of photocatalytic degradation of selected neonicotinoid insecticides by cathodic voltammetry with a bismuth film electrode. Electroanalysis. 2008;20:291–300.

    Article  Google Scholar 

  37. Guzsvány VJ, Gaál FF, Bjelica LJ, Ökrész SN. Voltammetric determination of imidacloprid and thiamethoxam. J Serb Chem Soc. 2005;70:735–43.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Iran National Science Foundation [Grant No. 95004691].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Rafati.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodsi, J., Rafati, A.A. A novel molecularly imprinted sensor for imidacloprid pesticide based on poly(levodopa) electro-polymerized/TiO2 nanoparticles composite. Anal Bioanal Chem 410, 7621–7633 (2018). https://doi.org/10.1007/s00216-018-1372-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1372-4

Keywords

Navigation