Analytical and Bioanalytical Chemistry

, Volume 410, Issue 29, pp 7621–7633 | Cite as

A novel molecularly imprinted sensor for imidacloprid pesticide based on poly(levodopa) electro-polymerized/TiO2 nanoparticles composite

  • Javad Ghodsi
  • Amir Abbas RafatiEmail author
Research Paper


This research reports the first application of poly(levodopa) in the development of a molecularly imprinted sensor. A novel electrochemical sensor with high selectivity and sensitivity was developed for imidacloprid (IMD) determination based on an imprinted poly(levodopa) electro-polymerized on electrodeposited TiO2 nanoparticles (TiO2NPs) modified glassy carbon electrode (GCE). High affinity of IMD imprinted poly(levodopa) to IMD provided a very selective response of the electrode to IMD and electrodeposited TiO2NPs at the electrode surface resulted in the electrocatalytic reduction of IMD and consequently high sensitivity of the modified electrode. IMD imprinted poly(levodopa) electro-polymerized on TiO2NPs was well characterized by FT-IR, SEM, and EDX techniques. Sensor response to IMD was investigated by using square wave voltammetry (SWV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The sensor showed a really vast linear range of 2–400 μM, completely low detection limit (LoD) of 0.3 μM, and limit of quantitation (LoQ) of 1 μM by SWV measurements that are very acceptable in comparison to other reported IMD sensors. Sensor application in real samples for IMD determination showed good applicability of the developed sensor. Response time is very short and the sensor showed suitable repeatability and stability after use several times.

Graphical abstract


Molecularly imprinted sensor Electrochemical Pesticide Imidacloprid Poly(levodopa) TiO2 nanoparticles 


Funding information

This work was supported by the Iran National Science Foundation [Grant No. 95004691].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Majidi MR, Baj RFB, Bamorowat M. Ionic liquid modified carbon-ceramic electrode with structure similar to graphene nanoplatelets: application to imidacloprid determination in some agricultural products. Measurement. 2016;93:29–35.CrossRefGoogle Scholar
  2. 2.
    Kobashi K, Harada T, Adachi Y, Mori M, Ihara M, Hayasaka D. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol Environ Saf. 2017;138:122–9.CrossRefGoogle Scholar
  3. 3.
    Xia X, Xia X, Huo W, Dong H, Zhang L, Chang Z. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environ Toxicol Pharmacol. 2016;45:132–9.CrossRefGoogle Scholar
  4. 4.
    Jeria Y, Bazaes A, Báez ME, Espinoza J, Martínez J, Fuentes E. Photochemically induced fluorescence coupled to second-order multivariate calibration as analytical tool for determining imidacloprid in honeybees. Chemom Intell Lab Syst. 2017;160:1–7.CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Yang Y, Sun H, Liu Z. Metabolic imidacloprid resistance in the brown planthopper, nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochem Mol Biol. 2016;79:50–6.CrossRefGoogle Scholar
  6. 6.
    Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, et al. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron. 2016;75:88–95.CrossRefGoogle Scholar
  7. 7.
    Zheng Q, Niu Y, Li H. Synthesis and characterization of imidacloprid microspheres for controlled drug release study. React Funct Polym. 2016;106:99–104.CrossRefGoogle Scholar
  8. 8.
    Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens Actuators B Chem. 2015;220:216–21.CrossRefGoogle Scholar
  9. 9.
    Kumaravel A, Chandrasekaran M. Electrochemical determination of imidacloprid using nanosilver Nafion®/nanoTiO2 Nafion® composite modified glassy carbon electrode. Sens. Actuators, B Chem. 2011;158:319–26.CrossRefGoogle Scholar
  10. 10.
    Lei W, Han Z, Si W, Hao Q, Zhang Y, Xia M, et al. Sensitive and selective detection of imidacloprid by graphene-oxide-modified glassy carbon electrode. Chem Aust. 2014;1:1063–7.Google Scholar
  11. 11.
    Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, et al. Electrochemical determination of imidacloprid using poly (carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sens. Actuators, B Chem. 2013;183:102–9.CrossRefGoogle Scholar
  12. 12.
    Si W, Han Z, Lei W, Wu Q, Zhang Y, Xia M, et al. Fast electrochemical determination of imidacloprid at an activated glassy carbon electrode. J Electrochem Soc. 2014;161:B9–B13.CrossRefGoogle Scholar
  13. 13.
    Brahim MB, Ammar HB, Abdelhédi R, Samet Y. Electrochemical behavior and analytical detection of imidacloprid insecticide on a BDD electrode using square-wave voltammetric method. Chin Chem Lett. 2016;27:666–72.CrossRefGoogle Scholar
  14. 14.
    Kumaravel A, Chandrasekaran M. Electrochemical determination of chlorpyrifos on a nano-TiO2/cellulose acetate composite modified glassy carbon electrode. J Agric Food Chem. 2015;63:6150–6.CrossRefGoogle Scholar
  15. 15.
    Jiang H, Jiang D, Shao J, Sun X. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron. 2016;75:411–9.CrossRefGoogle Scholar
  16. 16.
    Shoji R, Takeuchi T, Kubo I. Atrazine sensor based on molecularly imprinted polymer-modified gold electrode. Anal Chem. 2003;75:4882–6.CrossRefGoogle Scholar
  17. 17.
    Lian W, Liu S, Yu J, Xing X, Li J, Cui M, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron. 2012;38:163–9.CrossRefGoogle Scholar
  18. 18.
    Do MH, Florea A, Farre C, Bonhomme A, Bessueille F, Vocanson F, et al. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem. 2015;95:1489–501.CrossRefGoogle Scholar
  19. 19.
    Introna B, Mazzotta E, Turco A, Malitesta C, Mohammadi R, Ramezany F, et al. Electrochemical detection of serotonin using polyethylenedioxythiophene and core-shell molecularly imprinted polymer nanoparticles. SENSORS, 2014 IEEE, IEEE2014, pp. 309–312.Google Scholar
  20. 20.
    Zaidi SA, Shin JH. Molecularly imprinted polymer electrochemical sensors based on synergistic effect of composites synthesized from graphene and other nanosystems. Int J Electrochem Sci. 2014;9:4598–616.Google Scholar
  21. 21.
    Rezaei B, Foroughi-Dehnavi S, Ensafi AA. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics. 2015;21:2969–80.CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3:7437–44.CrossRefGoogle Scholar
  23. 23.
    Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, et al. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sensors. 2018;3:378–85.CrossRefGoogle Scholar
  24. 24.
    Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron. 2018;112:54–71.CrossRefGoogle Scholar
  25. 25.
    Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.CrossRefGoogle Scholar
  26. 26.
    Jiang LC, Zhang WD. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis. 2009;21:988–93.CrossRefGoogle Scholar
  27. 27.
    Vetrivel V, Rajendran K, Kalaiselvi V. Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int J Chem Tech Res. 2015;7:1090–7.Google Scholar
  28. 28.
    Wang Z, Jiang T, Du Y, Chen K, Yin H. Synthesis of mesoporous titania and the photocatalytic activity for decomposition of methyl orange. Mater Lett. 2006;60:2493–6.CrossRefGoogle Scholar
  29. 29.
    Gao Z, Pang L, Feng H, Wang S, Wang Q, Wang M, et al. Preparation and characterization of a novel imidacloprid microcapsule via coating of polydopamine and polyurea. RSC Adv. 2017;7:15762–8.CrossRefGoogle Scholar
  30. 30.
    Quintás G, Armenta S, Garrigues S, Guardia MDL. Fourier transform infrared determination of imidacloprid in pesticide formulations. J Braz Chem Soc. 2004;15:307–12.CrossRefGoogle Scholar
  31. 31.
    Tan JM, Foo JB, Fakurazi S, Hussein MZ. Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes. Beilstein J Nanotechnol. 2015;6:243–53.CrossRefGoogle Scholar
  32. 32.
    Kura AU, Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomedicine. 2013;8:1103–10.CrossRefGoogle Scholar
  33. 33.
    Behnajady M, Eskandarloo H, Modirshahla N, Shokri M. Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination. 2011;278:10–7.CrossRefGoogle Scholar
  34. 34.
    Papp Z, Švancara I, Guzsvány V, Vytřas K, Gaál F. Voltammetric determination of imidacloprid insecticide in selected samples using a carbon paste electrode. Microchim Acta. 2009;166:169–75.CrossRefGoogle Scholar
  35. 35.
    Navalón A, El-Khattabi R, González-Casado A, Vilchez JL. Differential-pulse polarographic determination of the insecticide imidacloprid in commercial formulations. Microchim Acta. 1999;130:261–5.CrossRefGoogle Scholar
  36. 36.
    Guzsvány V, Kádár M, Papp Z, Bjelica L, Gaál F, Toth K. Monitoring of photocatalytic degradation of selected neonicotinoid insecticides by cathodic voltammetry with a bismuth film electrode. Electroanalysis. 2008;20:291–300.CrossRefGoogle Scholar
  37. 37.
    Guzsvány VJ, Gaál FF, Bjelica LJ, Ökrész SN. Voltammetric determination of imidacloprid and thiamethoxam. J Serb Chem Soc. 2005;70:735–43.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations