Skip to main content
Log in

Protamine-gold nanoclusters as peroxidase mimics and the selective enhancement of their activity by mercury ions for highly sensitive colorimetric assay of Hg(II)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We certify that protamine-gold nanoclusters (PRT-AuNCs) synthesized by one-pot method exhibit peroxidase-like activity. The catalytic activity of PRT-AuNCs followed typical Michaelis–Menten kinetics and exhibited higher affinity to 3,3′,5,5′-tetramethylbenzidine (TMB) as the substrate compared to that of natural horseradish peroxidase. Meanwhile, we found that Hg(II) could dramatically and selectively enhance the peroxidase-like activity of PRT-AuNCs, and the enhanced mechanism by Hg(II) was demonstrated to be generation of the cationic Au species and the partly oxidized Au species (Auδ+) by Hg2+–Au0/Au+ interaction. Based on this finding, quantitative determinations of Hg(II) via visual observation and absorption spectra were achieved. The proposed strategy displays high selectivity that arises from the strong aurophilic interaction of mercury towards gold. Moreover, the developed method is highly sensitive with a wide linear range and low detection limit of 1.16 nM. This strategy is not only helpful to develop effective nanomaterials-based artificial enzyme mimics but also irradiative to discover new applications of artificial mimic enzymes in bio-detection, medical diagnostics, and biotechnology.

Protamine-gold nanoclusters (PRT-AuNCs) synthesized by one-pot method exhibit peroxidase-like activity. Hg(II) can stimulate the peroxidase-like activity of PRT-AuNCs selectively, enhancing their ability to catalyze the chromogenic reaction of TMB by H2O2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang X, Sun C, Guo Y, Nie G, Xu L. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens Bioelectron. 2015;64:165–70.

    Article  CAS  PubMed  Google Scholar 

  2. Kwon D, Lee S, Ahn MM, Kang IS, Park KH, Jeon S. Colorimetric detection of pathogenic bacteria using platinum-coated magnetic nanoparticle clusters and magnetophoretic chromatography. Anal Chim Acta. 2015;883:61–6.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Q, Zhang L, Shang C, Zhang Z, Dong S. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem Commun (Camb). 2016;52:5410–3.

    Article  CAS  PubMed  Google Scholar 

  4. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article  CAS  PubMed  Google Scholar 

  5. Li K, Wang K, Qin W, Deng S, Li D, Shi J, et al. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J Am Chem Soc. 2015;137:4292–5.

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Sun Z, Huang JPJ, Liu J. Hydrogen peroxide displacing DNA from nanoceria: mechanism and detection of glucose in serum. J Am Chem Soc. 2015;137:1290–5.

    Article  CAS  PubMed  Google Scholar 

  7. Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018; https://doi.org/10.1038/s41467-018-03903-8.

  8. Lu C, Liu X, Li Y, Yu F, Tang L, Hu Y, et al. Multifunctional Janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces. 2015;7:15395–402.

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Liu R, Xing G, Wang T, Liu S. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens Bioelectron. 2017;96:44–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tao Y, Lin Y, Ren J, Qu X. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens Bioelectron. 2013;42:41–6.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Ding D, Zhen Y, Guo R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron. 2017;92:140–6.

    Article  CAS  PubMed  Google Scholar 

  12. Hong YC, Sun KQ, Zhang GR, Zhong RY, Xu BQ. Fully dispersed Pt entities on nano-Au dramatically enhance the activity of gold for chemoselective hydrogenation catalysis. Chem Commun (Camb). 2011;47:1300–2.

    Article  CAS  PubMed  Google Scholar 

  13. Han L, Li Y, Fan A. Improvement of mimetic peroxidase activity of gold nanoclusters on the luminol chemiluminescence reaction by surface modification with ethanediamine. Luminescence. 2018; https://doi.org/10.1002/bio.3472.

    Article  CAS  PubMed  Google Scholar 

  14. Lien CW, Chen YC, Chang HT, Huang CC. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale. 2013;5:8227–34.

    Article  CAS  PubMed  Google Scholar 

  15. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun (Camb). 2011;47:11939–41.

    Article  CAS  PubMed  Google Scholar 

  16. Sivamani E, DeLong RK, Qu R. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep. 2009;28:213–21.

    Article  CAS  PubMed  Google Scholar 

  17. DeLong RK, Akhtar U, Sallee M, Parker B, Barber S, Zhang J, et al. Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials. 2009;30:6451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan Y, Long YF, Li YF. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal Chim Acta. 2009;653:207–11.

    Article  CAS  PubMed  Google Scholar 

  19. Ramalhosaa E, Rıo Segadeb S, Pereira E, Valed C, Duartec A. Simple methodology for methylmercury and inorganic mercury determinations by high-performance liquid chromatography–cold vapour atomic fluorescence spectrometry. Anal Chim Acta. 2001;448:135–43.

    Article  Google Scholar 

  20. de Jesus RM, Silva LOB, Castro JT, de Azevedo Neto AD, de Jesus RM, Ferreira SLC. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry. Talanta. 2013;106:293–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang M, Feng W, Shi J, Zhang F, Wang B, Zhu M, et al. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta. 2007;71:2034–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chen SH, Wang YS, Chen YS, Tang X, Cao JX, Li MH, et al. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher. Spectrochim Acta A Mol Biomol Spectrosc. 2015;151:315–21.

    Article  CAS  PubMed  Google Scholar 

  23. Tang X, Wang YS, Xue JH, Zhou B, Cao JX, Chen SH, et al. A novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer. J Pharm Biomed Anal. 2015;107:258–64.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Yang X, Yang X, Liu P, Wang K, Huang J, et al. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:283–7.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu R, Zhou Y, Wang XL, Liang LP, Long YJ, Wang QL, et al. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta. 2013;117:127–32.

    Article  CAS  PubMed  Google Scholar 

  26. Tseng CW, Chang HY, Chang JY, Huang CC. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale. 2012;4:6823–30.

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Ding Y, Yang B, Liu Z, Liu Q, Zhang X. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sens Actuators B Chem. 2018;271:336–45.

    Article  CAS  Google Scholar 

  28. Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, et al. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens Actuators B Chem. 2018;259:775–83.

    Article  CAS  Google Scholar 

  29. Wu K, Zhao X, Chen M, Zhang H, Liu Z, Zhang X, et al. Synthesis of well-dispersed Fe3O4 nanoparticles loaded on montmorillonite and sensitive colorimetric detection of H2O2 based on its peroxidase-like activity. New J Chem. 2018;42:9578–87.

    Article  CAS  Google Scholar 

  30. Zhu X, Chen W, Wu K, Li H, Fu M, Liu Q, et al. A colorimetric sensor of H2O2 based on Co3O4–montmorillonite nanocomposites with peroxidase activity. New J Chem. 2018;42:1501–9.

    Article  CAS  Google Scholar 

  31. Houston JB, Kenworthy KE. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos. 2000;28:246–54.

    CAS  PubMed  Google Scholar 

  32. Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, et al. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry. 2014;20:16377–83.

    Article  CAS  PubMed  Google Scholar 

  33. Khataee A, Haddad Irani-Nezhad M, Hassanzadeh J. Improved peroxidase mimetic activity of a mixture of WS2 nanosheets and silver nanoclusters for chemiluminescent quantification of H2O2 and glucose. Microchim Acta. 2018;185:190.

    Article  CAS  Google Scholar 

  34. Su L, Xiong Y, Yang H, Zhang P, Ye F. Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B. 2016;4:128–34.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem. 2010;20:5110–6.

    Article  CAS  Google Scholar 

  36. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, et al. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale. 2012;4:3969–76.

    Article  CAS  PubMed  Google Scholar 

  37. Stratakis M, Garcia H. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev. 2012;112:4469–506.

    Article  CAS  PubMed  Google Scholar 

  38. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Laegsgaard E, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science. 2007;315:1692–6.

    Article  CAS  PubMed  Google Scholar 

  39. Klyushin AY, Rocha TC, Havecker M, Knop-Gericke A, Schlogl R. A near ambient pressure XPS study of Au oxidation. Phys Chem Chem Phys. 2014;16:7881–6.

    Article  CAS  PubMed  Google Scholar 

  40. Huai Q, Zhang B, Sheng F, Tao Z. Raman and ATR infrared studies of the conformation of metallothionein in solution. Spectrosc Lett. 1995;28:829–38.

    Article  CAS  Google Scholar 

  41. Awotwe-Otoo D, Agarabi C, Keire D, Lee S, Raw A, Yu L, et al. Physicochemical characterization of complex drug substances: evaluation of structural similarities and differences of protamine sulfate from various sources. AAPS J. 2012;14:619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vener MV, Odinokov AV, Wehmeyer C, Sebastiani D. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations. J Chem Phys. 2015;142:215106.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, et al. A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-“turning on” mechanism. J Pharm Biomed Anal. 2012;70:362–8.

    Article  CAS  PubMed  Google Scholar 

  44. Xu J, Kong DM. Specific Hg2+ quantitation using intramolecular split G-quadruplex DNAzyme. Chin J Anal Chem. 2012;40:347–53.

    Article  CAS  Google Scholar 

  45. Kong DM, Wang N, Guo XX, Shen HX. ‘Turn-on’ detection of Hg2+ ion using a peroxidase-like split G-quadruplex-hemin DNAzyme. Analyst. 2010;135:545–9.

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Cheng X, Bing T, Fang C, Shangguan D. Visual detection of Hg2+ with high selectivity using thymine modified gold nanoparticles. Anal Sci. 2010;26:1169–72.

    Article  PubMed  Google Scholar 

  47. Xu H, Zhu X, Ye H, Yu L, Liu X, Chen G. A simple “molecular beacon”-based fluorescent sensing strategy for sensitive and selective detection of mercury (II). Chem Commun (Camb). 2011;47:12158–60.

    Article  CAS  Google Scholar 

  48. Ge J, Li XP, Jiang JH, Yu RQ. A highly sensitive label-free sensor for mercury ion (Hg2+) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta. 2014;122:85–90.

    Article  CAS  PubMed  Google Scholar 

  49. Li Q, Zhou X, Xing D. Rapid and highly sensitive detection of mercury ion (Hg2+) by magnetic beads-based electrochemiluminescence assay. Biosens Bioelectron. 2010;26:859–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21177052, 81502850), the Natural Science Foundation of Hunan Province in China (No. 2015JJ2122), and the Science and Technology Program of Hunan Province in China (No. 2010SK3039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 3.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YQ., Fu, S., Wang, YS. et al. Protamine-gold nanoclusters as peroxidase mimics and the selective enhancement of their activity by mercury ions for highly sensitive colorimetric assay of Hg(II). Anal Bioanal Chem 410, 7385–7394 (2018). https://doi.org/10.1007/s00216-018-1344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1344-8

Keywords

Navigation