Skip to main content
Log in

Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by 1H HR-MAS NMR

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to establish the developmental profile of metabolic changes of 3D aggregating brain cell cultures by 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. The histotypic 3D brain aggregate, containing all brain cell types, is an excellent model for mechanistic studies including OMICS analysis; however, their metabolic profile has not been yet fully investigated. Chemometric analysis revealed a clear separation of samples from the different maturation time points. Metabolite concentration evolutions could be followed and revealed strong and various metabolic alterations. The strong metabolite evolution emphasizes the brain modeling complexity during maturation, possibly reflecting physiological processes of brain tissue development. The small observed intra- and inter-experimental variabilities show the robustness of the combination of 1H-HR-MAS NMR and 3D brain aggregates, making it useful to investigate mechanisms of toxicity that will ultimately contribute to improve predictive neurotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.

    Article  CAS  PubMed  Google Scholar 

  2. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.

    Article  CAS  PubMed  Google Scholar 

  3. Man F, Anna T, Kathy M, Wu JH, Ken H, Edmundo M. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf J. 2001;35(1):293–317.

    Article  Google Scholar 

  4. Coecke S, Eskes C, Gartlon J, Kinsner A, Price A, van Vliet E, et al. The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol. 2006;21(2):153–67.

    Article  CAS  PubMed  Google Scholar 

  5. Bal-Price AK, Hogberg HT, Buzanska L, Coecke S. Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol. 2010;32(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  6. OECD. Test no. 424: neurotoxicity study in rodents, OECD guidelines for the testing of chemicals, section 4, no. 424, OECD Publishing, Paris. 1997. https://doi.org/10.1787/9789264071025-en. Accessed 27 April 2018.

  7. OECD. Test no. 426: developmental neurotoxicity study, OECD guidelines for the testing of chemicals, section 4, no. 426, OECD Publishing, Paris. 2007. https://doi.org/10.1787/9789264067394-en. Accessed 27 April 2018.

  8. Crofton KM, Mundy WR, Lein PJ, Bal-Price A, Coecke S, Seiler AE, et al. Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX. 2011;28(1):9–15.

    PubMed  Google Scholar 

  9. Honegger P, Defaux A, Monnet-Tschudi F, Zurich MG. Preparation, maintenance, and use of serum-free aggregating brain cell cultures. Methods Mol Biol. 2011;758:81–97.

    Article  CAS  PubMed  Google Scholar 

  10. Schultz L, Zurich MG, Culot M, da CA LC, Bellwon P, et al. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro. 2015;30(1 Pt A):138–65.

    Article  CAS  PubMed  Google Scholar 

  11. Prieto P, Kinsner-Ovaskainen A, Stanzel S, Albella B, Artursson P, Campillo N, et al. The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European Project ACuteTox. Toxicol in Vitro. 2013;27(4):1357–76.

    Article  CAS  PubMed  Google Scholar 

  12. Zurich MG, Stanzel S, Kopp-Schneider A, Prieto P, Honegger P. Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicol in Vitro. 2013;27(4):1416–24.

    Article  CAS  PubMed  Google Scholar 

  13. Zurich MG, Eskes C, Honegger P, Berode M, Monnet-Tschudi F. Maturation-dependent neurotoxicity of lead acetate in vitro: implication of glial reactions. J Neurosci Res. 2002;70(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  14. Smirnova L, Hartung T. Chapter 14—human 3D in vitro models for developmental neurotoxicity. In: Paule MG, Wang C, editors. Handbook of developmental neurotoxicology (Second Edition). Academic Press; 2018. p. 163–72.

  15. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48:949–58.

    Article  CAS  PubMed  Google Scholar 

  16. Ramu J, Konak T, Liachenko S. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T. Brain Res. 2016;1651:114–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kato T, Nishina M, Matsushita K, Hori E, Mito T, Takashima S. Neuronal maturation and N-acetyl-L-aspartic acid development in human fetal and child brains. Brain Dev. 1997;19(2):131–3.

    Article  CAS  PubMed  Google Scholar 

  18. Xu D, Bonifacio SL, Charlton NN, Vaughan P, Lu Y, Ferriero DM, et al. MR spectroscopy of normative premature newborns. J Magn Reson Imaging. 2011;33(2):306–11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Card D, Nossin-Manor R, Moore AM, Raybaud C, Sled JG, Taylor MJ. Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr Res. 2013;74(1):75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanifuji S, Akasaka M, Kamei A, Araya N, Asami M, Matsumoto A, et al. Temporal brain metabolite changes in preterm infants with normal development. Brain Dev. 2017;39(3):196–202.

    Article  PubMed  Google Scholar 

  21. Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med. 2003;50(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  22. Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol. 2008;36(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  23. Leenders J, Frederich M, de Tullio P. Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov Today Technol. 2015;13:39–46.

    Article  PubMed  Google Scholar 

  24. Power WP. High-resolution magic angle spinning-enabling applications of NMR spectroscopy to semi-solid phases. Annu Rep NMR Spectrosc. 2011;72:111–56.

    Article  CAS  Google Scholar 

  25. Vermathen M, Paul LEH, Diserens G, Vermathen P, Furrer J. 1H HR-MAS NMR based metabolic profiling of cells in response to treatment with a hexacationic ruthenium metallaprism as potential anticancer drug. PLoS One. 2015;10(5):e0128478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.

    Article  CAS  PubMed  Google Scholar 

  27. Moestue S, Sitter B, Bathen TF, Tessem MB, Gribbestad IS. HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem. 2011;11(1):2–26.

    Article  CAS  PubMed  Google Scholar 

  28. Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, et al. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One. 2012;7(12):e52335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keshari KR, Sriram R, Van CM, Wilson DM, Wang ZJ, Vigneron DB, et al. Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate. 2013;73(11):1171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bollard ME, Xu J, Purcell W, Griffin JL, Quirk C, Holmes E, et al. Metabolic profiling of the effects of D-galactosamine in liver spheroids using (1)H NMR and MAS-NMR spectroscopy. Chem Res Toxicol. 2002;15(11):1351–9.

    Article  CAS  PubMed  Google Scholar 

  31. Rosi A, Grande S, Luciani AM, Barone P, Mlynarik V, Viti V, et al. (1H) MRS studies of signals from mobile lipids and from lipid metabolites: comparison of the behavior in cultured tumor cells and in spheroids. NMR Biomed. 2004;17(2):76–91.

    Article  CAS  PubMed  Google Scholar 

  32. Sriram R, Van CM, Hansen A, Wang ZJ, Vigneron DB, Wilson DM, et al. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor. NMR Biomed. 2015;28(9):1141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esteve V, Berganzo J, Monge R, Martinez-Bisbal MC, Villa R, Celda B, et al. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics. 2014 Nov;8(6):064105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duarte IF, Lamego I, Rocha C, Gil AM. NMR metabonomics for mammalian cell metabolism studies. Bioanalysis. 2009;1(9):1597–614.

    Article  CAS  PubMed  Google Scholar 

  35. Santos SS, Leite SB, Sonnewald U, Carrondo MJT, Alves PM. Stirred vessel cultures of rat brain cells aggregates: characterization of major metabolic pathways and cell population dynamics. J Neurosci Res. 2007;85(15):3386–97.

    Article  CAS  PubMed  Google Scholar 

  36. Feng Y, Zhu H, Zhang X, Wang X, Xu F, Tang H, et al. NMR based cerebrum metabonomic analysis reveals simultaneous interconnected changes during chick embryo incubation. PLoS One. 2015;10(10):e0139948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zurich MG, Monnet-Tschudi F, Costa LG, Schilter BT, Honegger P. Aggregating brain cell cultures for neurotoxicological studies. In vitro neurotoxicology. Springer; 2004. p. 243-66.

  38. Aguilar JA, Nilsson M, Bodenhausen G, Morris GA. Spin echo NMR spectra without J modulation. Chem Commun. 2012;48(6):811–3.

    Article  CAS  Google Scholar 

  39. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78(13):4281–90.

    Article  CAS  PubMed  Google Scholar 

  40. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.

    CAS  PubMed  Google Scholar 

  41. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129–53.

    Article  CAS  PubMed  Google Scholar 

  42. Duarte JM, Lei H, Mlynarik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 2012 Jun;61(2):342–62.

    Article  CAS  PubMed  Google Scholar 

  43. Vermathen P, Capizzano AA, Maudsley AA. Administration and H-1 MRS detection of histidine in human brain: application to in vivo pH measurement. Magn Reson Med. 2000;43(5):665–75.

    Article  CAS  PubMed  Google Scholar 

  44. De Graaf RA, Chowdhury GM, Behar KL. Quantification of high-resolution (1)H NMR spectra from rat brain extracts. Anal Chem. 2011;83(1):216–24.

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Chen L, Gao H, Zeng D, Yue Y, Liu M, et al. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance. Magn Reson Chem. 2006 Mar;44(3):263–8.

    Article  CAS  PubMed  Google Scholar 

  46. Schurr PE, Thompson HT, Henderson LM, Williams JN Jr, Elvehjem CA. The determination of free amino acids in rat tissues. J Biol Chem. 1950;182:39–45.

    CAS  Google Scholar 

  47. Brand A, Leibfritz D, Hamprecht B, Dringen R. Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. J Neurochem. 1998;71(2):827–32.

    Article  CAS  PubMed  Google Scholar 

  48. Sturman JA. Taurine in development. Physiol Rev. 1993;73(1):119–47.

    Article  CAS  PubMed  Google Scholar 

  49. Nakada T. Conversion of brain cytosol profile from fetal to adult type during the perinatal period: taurine-NAA exchange. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandstrom J, Broyer A, Zoia D, Schilt C, Greggio C, Fournier M, et al. Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. Neurotoxicology. 2017;60:116–24.

    Article  CAS  PubMed  Google Scholar 

  51. Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, et al. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol. 2018;14(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  52. Precht C, Diserens G, Oevermann A, Vermathen M, Lang J, Boesch C, et al. Visibility of lipid resonances in HR-MAS spectra of brain biopsies subject to spinning rate variation. Biochim Biophys Acta. 2015;1851(12):1539–44.

    Article  CAS  PubMed  Google Scholar 

  53. Huster D, Arnold K, Gawrisch K. Investigation of lipid organization in biological membranes by two-dimensional nuclear overhauser enhancement spectroscopy. J Phys Chem B. 1999;103(1):243–51.

    Article  CAS  Google Scholar 

  54. Scheidt HA, Huster D. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning. Acta Pharmacol Sin. 2008;29(1):35–49.

    Article  CAS  PubMed  Google Scholar 

  55. Scheidt HA, Pampel A, Nissler L, Gebhardt R, Huster D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim Biophys Acta. 2004;1663(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  56. Green P, Yavin E. Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J Lipid Res. 1993;34(12):2099–107.

    CAS  PubMed  Google Scholar 

  57. Van Aerde JE, Wilke MS, Feldman M, Clandinin MT. Accretion of lipid in the fetus and newborn. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology. Third ed. Philadelphia: Elsevier, Saunders; 2004. p. 388–404.

    Chapter  Google Scholar 

  58. Bourre JM, Honegger P, Daudu O, Matthieu JM. The lipid composition of rat brain aggregating cell cultures during development. Neurosci Lett. 1979;11(3):275–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UniBE ID-Grant (PV), Swiss National Science Foundation SNF grant no. 200021_14438 (MV), and Swiss Centre for Applied Human Toxicology (SCAHT) grant (MGZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vermathen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the VD Service de la consommation et des affaires vétérinaires (authorization number VD3128). Animals were housed and handled following the guidelines of the Ethics Committee for Animal Experimentation of the Swiss Academy of Medical Sciences (SAMS) and the Swiss Academy of Sciences (SCNAT).

Electronic supplementary material

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diserens, G., Vermathen, M., Zurich, MG. et al. Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by 1H HR-MAS NMR. Anal Bioanal Chem 410, 6733–6749 (2018). https://doi.org/10.1007/s00216-018-1295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1295-0

Keywords

Navigation