Skip to main content
Log in

Flow field-flow fractionation for hydrodynamic diameter estimation of gold nanoparticles with various types of surface coatings

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Flow field-flow fractionation (FlFFF) with inductively coupled plasma mass spectrometric (ICP-MS) detection was applied for estimating the hydrodynamic diameter of gold nanoparticles (AuNPs). Hydrodynamic diameters of AuNPs of the same core diameter but with different surface coatings were different because the coating agents and their properties were different. The challenge of this work is due to the fact that AuNPs with various types of surface coatings exhibited different interactions in the FlFFF channel, leading to different retention behaviors. Therefore, we are interested in finding suitable FlFFF conditions for estimating the hydrodynamic diameter of AuNPs with various types of electrostatic stabilizing agents [tannic acid (TA) and citrate (CT)] and steric stabilizing agents [polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and branched polyethylene imine (BPEI)]. Different types of carrier liquids (DI water, 0.02% FL-70, 0.05% SDS, and 30 mM Tris buffer) and membrane materials [regenerated cellulose (RC) and polyethersulfone (PES) membranes] were investigated. Generally, FlFFF was applied for size characterization of nanoparticles based on FlFFF theory but the interactions between AuNPs and membrane affected the retention and the experimentally obtained hydrodynamic diameters of AuNPs from the FlFFF system. With DI water as a carrier liquid with RC or PES membranes, the hydrodynamic diameters of negatively charged particles (TA-, CT-, PVP-, and PEG-stabilized AuNPs) from FlFFF corresponded well with the hydrodynamic diameters from dynamic light scattering (DLS). Interestingly, it was possible to estimate hydrodynamic diameters of AuNPs in the mixture by using FlFFF whereas it was not possible with the use of DLS within the size range studied. This work summarized the possible interactions between AuNPs with various coating agents and membrane materials in different carrier liquids to give guidelines on the suitable conditions of FlFFF for further applications on AuNP hydrodynamic diameter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Samontha A, Shiowatana J, Siripinyanond A. Particle size characterization of titanium dioxide in sunscreen products using sedimentation field-flow fractionation–inductively coupled plasma–mass spectrometry. Anal Bioanal Chem. 2011;399:973–8.

    Article  CAS  PubMed  Google Scholar 

  2. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.

    Article  CAS  PubMed  Google Scholar 

  3. Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A, Chambrier I, et al. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir. 2002;18:2985–7.

    Article  CAS  Google Scholar 

  4. Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced raman scattering from indocyanine green on gold nanoparticles. Anal Chem. 2005;77:2381–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech. 2011;74:592–604.

    Article  CAS  PubMed  Google Scholar 

  6. Lai S-F, Ko B-H, Chien C-C, Chang C-J, Yang S-M, Chen H-H, et al. Gold nanoparticles as multimodality imaging agents for brain gliomas. J Nanobiotechnology. 2015;13:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clement S, Chen W, Anwer AG, Goldys EM. Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Microchim Acta. 2017;184:1765–71.

    Article  CAS  Google Scholar 

  8. Schimpf ME, Caldwell JC, Giddings JC (eds). Field-flow fractionation handbook. New York: Wiley; 2000.

    Google Scholar 

  9. Giddings JC, Yang FJ, Myers MN. Flow-field-flow fractionation: a versatile new separation method. Science. 1976;193:1244.

    Article  CAS  PubMed  Google Scholar 

  10. Calzolai L, Gilliland D, Garcìa CP, Rossi F. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. J Chromatogr A. 2011;1218:4234–9.

    Article  CAS  PubMed  Google Scholar 

  11. Meisterjahn B, Wagner S, von der Kammer F, Hennecke D, Hofmann T. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: influence of run conditions and of particle and membrane charges. J Chromatogr A. 2016;1440:150–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mudalige TK, Qu H, Sánchez-Pomales G, Sisco PN, Linder SW. Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation. Anal Chem. 2015;87:1764–72.

    Article  CAS  PubMed  Google Scholar 

  13. Bolea E, Jiménez-Lamana J, Laborda F, Castillo JR. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2011;401:2723–32.

    Article  CAS  PubMed  Google Scholar 

  14. Bendixen N, Losert S, Adlhart C, Lattuada M, Ulrich A. Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A. 2014;1334:92–100.

    Article  CAS  PubMed  Google Scholar 

  15. López-Heras I, Madrid Y, Cámara C. Prospects and difficulties in TiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry. Talanta. 2014;124:71–8.

    Article  CAS  PubMed  Google Scholar 

  16. M-M P, Somchue W, Shiowatana J, Siripinyanond A. Flow field-flow fractionation for particle size characterization of selenium nanoparticles incubated in gastrointestinal conditions. Food Res Int. 2014;57:203–9.

    Article  CAS  Google Scholar 

  17. Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem. 2014;406:3919–27.

    Article  CAS  PubMed  Google Scholar 

  18. Ulrich A, Losert S, Bendixen N, Al-Kattan A, Hagendorfer H, Nowack B, et al. Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach. J Anal At Spectrom. 2012;27:1120–30.

    Article  CAS  Google Scholar 

  19. Hagendorfer H, Kaegi R, Traber J, Mertens SFL, Scherrers R, Ludwig C, et al. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization—prospects and limitations demonstrated on Au nanoparticles. Anal Chim Acta. 2011;706:367–78.

    Article  CAS  PubMed  Google Scholar 

  20. Saenmuangchin R, Mettakoonpitak J, Shiowatana J, Siripinyanond A. Separation of silver nanoparticles by hollow fiber flow field-flow fractionation: addition of tannic acid into carrier liquid as a modifier. J Chromatogr A. 2015;1415:115–22.

    Article  CAS  PubMed  Google Scholar 

  21. Jochem A-R, Ankah GN, Meyer L-A, Elsenberg S, Johann C, Kraus T. Colloidal mechanisms of gold nanoparticle loss in asymmetric flow field-flow fractionation. Anal Chem. 2016;88:10065–73.

    Article  CAS  Google Scholar 

  22. Gray EP, Bruton TA, Higgins CP, Halden RU, Westerhoff P, Ranville JF. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal At Spectrom. 2012;27:1532–9.

    Article  CAS  Google Scholar 

  23. Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, et al. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A. 2011;1218:4219–25.

    Article  CAS  PubMed  Google Scholar 

  24. Geiss O, Cascio C, Gilliland D, Franchini F, Barrero-Moreno J. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet–visible detectors. J Chromatogr A. 2013;1321:100–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sánchez-García L, Bolea E, Laborda F, Cubel C, Ferrer P, Gianolio D, et al. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. J Chromatogr A. 2016;1438:205–15.

    Article  CAS  PubMed  Google Scholar 

  26. Qu H, Quevedo IR, Linder SW, Fong A, Mudalige TK. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time. J Nanopart Res. 2016;18:292.

    Article  CAS  Google Scholar 

  27. Gigault J, Mignard E, Hadri HE, Grassl B. Measurement bias on nanoparticle size characterization by asymmetric flow field-flow fractionation using dynamic light-scattering detection. Chromatographia. 2017;80:287–94.

    Article  CAS  Google Scholar 

  28. Karl M Krueger AMA-S, Mejia M and Colvin VL. The hydrodynamic size of polymer stabilized nanocrystals. Nanotechnology. 2007; 18.

  29. Hackley VA, Clogston JD. Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery. New York: Humana; 2011.

    Google Scholar 

  30. JitKang L, Swee PY, Hui XC, Siew CL. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 2013; 8.

  31. Tejamaya M, Römer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46:7011–7.

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Zeng J, Tao D, Zhang L. Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose. 2010;17:1159–69.

    Article  CAS  Google Scholar 

  33. Hongo T, Yamane C, Saito M, Okajima K. Super-molecular structures controlling the swelling behavior of regenerated cellulose membranes. Polym J. 1996;28:769.

    Article  CAS  Google Scholar 

  34. Farsi M, Heydarinasab A, Honarvar B, Arjmand M. The effect of crosslink temperature upon density and swelling degree of PDMS, PEG, PES and PAN membranes. Research article 6, 2016.

  35. Izák P, Hovorka Š, Bartovský T, Bartovská L, Crespo JG. Swelling of polymeric membranes in room temperature ionic liquids. J Membr Sci. 2007;296:131–8.

    Article  CAS  Google Scholar 

  36. Wang L, Yi BL, Zhang HM, Xing DM. Characteristics of polyethersulfone/sulfonated polyimide blend membrane for proton exchange membrane fuel cell. J Phys Chem B. 2008;112:4270–5.

    Article  CAS  PubMed  Google Scholar 

  37. Miller JC, Miller JN. Statistics for analytical chemistry. England: Eillis Horwood Limited; 1993.

    Google Scholar 

  38. Majewska-Nowak K, Kowalska I, Kabsch-Korbutowicz M. Ultrafiltration of SDS solutions using polymeric membranes. Desalination. 2005;184:415–22.

    Article  CAS  Google Scholar 

  39. Gigault J, Pettibone JM, Schmitt C, Hackley VA. Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta. 2014;809:9–24.

    Article  CAS  PubMed  Google Scholar 

  40. Mudalige TK, Qu H, Linder SW. Rejection of commonly used electrolytes in asymmetric flow field flow fractionation: effects of membrane molecular weight cutoff size, fluid dynamics, and valence of electrolytes. Langmuir. 2017;33:1442–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hassan PA, Rana S, Verma G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir. 2015;31:3–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for the research grant (BRG 6180006) from the Thailand Research Fund (TRF) and Mahidol University given to A. Siripinyanond and the scholarship from TRF through the Research and Researchers for Industries (RRi) and Natural Fruit Company Limited (Grant no. PHD 58I0077) given to R. Seanmuangchin. Thanks are also due to the Center of Excellence for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Thailand, and Mahidol University under the National Research Universities Initiative for the support of chemicals and equipment. We are also grateful to the National Nanotechnology Center (NANOTEC) for allowing us to use the zetasizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atitaya Siripinyanond.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenmuangchin, R., Siripinyanond, A. Flow field-flow fractionation for hydrodynamic diameter estimation of gold nanoparticles with various types of surface coatings. Anal Bioanal Chem 410, 6845–6859 (2018). https://doi.org/10.1007/s00216-018-1284-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1284-3

Keywords

Navigation