Skip to main content
Log in

Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the centuries, oak wood has been used in the maturation process of alcoholic beverages imparting aroma and flavor notes. Whereas several studies have dealt with the impact of oak wood on the chemical composition of, for example, wine aroma, only limited information is available on the odorant composition of unmodified and raw oak wood itself. To close this gap, a combination of human sensory and chemo-analytical techniques was applied for the elucidation of the chemical composition of oak odor, comprising extraction of the volatile fraction of oak wood by means of solvent-assisted flavor evaporation (SAFE) and subsequent mild concentration of the distillate. Odor extract dilution analysis (OEDA), which is based on gas chromatography-olfactometry (GC-O), was then applied for the targeted characterization of the odor-active compounds. Overall, a total of 97 odorants was identified via gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and heart-cut two-dimensional gas chromatography-mass spectrometry/olfactometry (2D-GC-MS/O). The majority of these odorants comprised a series of terpenes, mainly mono- and sesquiterpenes, aldehydes, acids, and lactones, as well as a number of odorants containing a phenolic core moiety. Several odorants are reported here for the first time as volatile organic compounds in oak wood. Identification of the molecular composition of oak wood odor helps to establish a better understanding of the distinctive smell of oak wood, and offers the basis for unveiling its potential effects on humans when being exposed to oak wood smell in daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flamini R, Dalla Vedova A, Cancian D, Panighel A, De Rosso M. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making. J Mass Spectrom. 2007;42(5):641–6. https://doi.org/10.1002/jms.1193.

    Article  CAS  PubMed  Google Scholar 

  2. De Rosso M, Cancian D, Panighel A, Dalla Vedova A, Flamini R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: volatile compounds and polyphenols. Wood Sci Technol. 2009;43(5):375–85. https://doi.org/10.1007/s00226-008-0211-8.

    Article  CAS  Google Scholar 

  3. González-Rodríguez J, Pérez-Juan P, Luque de Castro MD. Extraction of wood compounds by use of subcritical fluids. Chromatographia. 2003;57(5):363–8. https://doi.org/10.1007/bf02492409.

    Article  Google Scholar 

  4. Pérez-Coello MS, Sanz J, Cabezudo MD. Gas chromatographic-mass spectrometric analysis of volatile compounds in oak wood used for ageing of wines and spirits. Chromatographia. 1998;47(7):427. https://doi.org/10.1007/bf02466474.

    Article  Google Scholar 

  5. Culleré L, Fernández de Simón B, Cadahía E, Ferreira V, Hernández-Orte P, Cacho J. Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT Food Sci Technol. 2013;53(1):240–8. https://doi.org/10.1016/j.lwt.2013.02.010.

    Article  CAS  Google Scholar 

  6. Sefton MA, Francis IL, Williams PJ. Volatile norisoprenoid compounds as constituents of oak woods used in wine and spirit maturation. J Agric Food Chem. 1990;38(11):2045–9. https://doi.org/10.1021/jf00101a009.

    Article  CAS  Google Scholar 

  7. Anjos O, Carmona C, Caldeira I, Canas S. Variation of extractable compounds and lignin contents in wood fragments used in the aging of wine brandies. Bioresources. 2013;8(3):4484–96.

    Article  Google Scholar 

  8. Prida A, Puech J-L. Influence of geographical origin and botanical species on the content of extractives in American, French, and east European oak woods. J Agric Food Chem. 2006;54(21):8115–26. https://doi.org/10.1021/jf0616098.

    Article  CAS  PubMed  Google Scholar 

  9. Fernández de Simón B, Cadahía E, Jalocha J. Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. J Agric Food Chem. 2003;51(26):7671–8. https://doi.org/10.1021/jf030287u.

    Article  CAS  Google Scholar 

  10. Mosedale JR, Savill PS. Variation of heartwood phenolics and oak lactones between the species and phenological types of Quercus petraea and Q. Robur. Forestry. 1996;69(1):47–55.

    Article  Google Scholar 

  11. Gallego L, Alamo MD, Nevares I, Fernández J, Fernández de Simón B, Cadahía E. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd.). Food Sci Technol Int. 2012;18(2):151–65. https://doi.org/10.1177/1082013211427782.

    Article  CAS  PubMed  Google Scholar 

  12. Doussot F, De Jéso B, Quideau S, Pardon P. Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. J Agric Food Chem. 2002;50(21):5955–61. https://doi.org/10.1021/jf020494e.

    Article  CAS  PubMed  Google Scholar 

  13. Fernández de Simón B, Cadahía E, Sanz M, Poveda P, Perez-Magariño S, Ortega-Heras M, et al. Volatile compounds and sensorial characterization of wines from four Spanish denominations of origin, aged in Spanish Rebollo (Quercus pyrenaica Willd.) oak wood barrels. J Agric Food Chem. 2008;56(19):9046–55. https://doi.org/10.1021/jf8014602.

    Article  CAS  PubMed  Google Scholar 

  14. Cabrita MJ, Barrocas Dias C, Costa Freitas AM. Phenolic acids, phenolic aldehydes and Furanic derivates in oak chips: American vs. French Oaks. S Afr J Enol Vitic. 2011;32(2):204–10.

    CAS  Google Scholar 

  15. Vichi S, Santini C, Natali N, Riponi C, López-Tamames E, Buxaderas S. Volatile and semi-volatile components of oak wood chips analysed by accelerated solvent extraction (ASE) coupled to gas chromatography–mass spectrometry (GC–MS). Food Chem. 2007;102(4):1260–9. https://doi.org/10.1016/j.foodchem.2006.07.023.

    Article  CAS  Google Scholar 

  16. Fernández de Simón B, Cadahía E, del Álamo M, Nevares I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal Chim Acta. 2010;660(1):211–20. https://doi.org/10.1016/j.aca.2009.09.031.

    Article  CAS  PubMed  Google Scholar 

  17. Jordão AM, Ricardo-da-Silva JM, Laureano O, Adams A, Demyttenaere J, Verhé R, et al. Volatile composition analysis by solid-phase microextraction applied to oak wood used in cooperage (Quercus pyrenaica and Quercus petraea): effect of botanical species and toasting process. J Wood Sci. 2006;52(6):514–21. https://doi.org/10.1007/s10086-005-0796-6.

    Article  CAS  Google Scholar 

  18. Cutzach I, Chatonnet P, Henry R, Dubourdieu D. Identification of volatile compounds with a “toasty” aroma in heated oak used in Barrelmaking. J Agric Food Chem. 1997;45(6):2217–24. https://doi.org/10.1021/jf960947d.

    Article  CAS  Google Scholar 

  19. Prida A, Ducousso A, Petit RJ, Nepveu G, Puech J-L. Variation in wood volatile compounds in a mixed oak stand: strong species and spatial differentiation in whisky-lactone content. Ann For Sci. 2007;64(3):313–20. https://doi.org/10.1051/forest:2007008.

    Article  CAS  Google Scholar 

  20. Chatonnet P, Cutzach I, Pons M, Dubourdieu D. Monitoring toasting intensity of barrels by chromatographic analysis of volatile compounds from toasted oak wood. J Agric Food Chem. 1999;47(10):4310–8. https://doi.org/10.1021/jf981234t.

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Crump AM, Grbin PR, Cozzolino D, Warren P, Hayasaka Y, et al. Aroma potential of oak battens prepared from decommissioned oak barrels. J Agric Food Chem. 2015;63(13):3419–25. https://doi.org/10.1021/acs.jafc.5b00339.

    Article  CAS  PubMed  Google Scholar 

  22. Nonier M-F, De Gaulejac NV, Vivas N, Vitry C. Characterization of carotenoids and their degradation products in oak wood. Incidence on the flavour of wood. C R Chim. 2004;7(6):689–98. https://doi.org/10.1016/j.crci.2004.03.010.

    Article  CAS  Google Scholar 

  23. Díaz-Maroto MC, Guchu E, Castro-Vázquez L, de Torres C, Pérez-Coello MS. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC–MS and GC–O. Flavour Fragr J. 2008;23(2):93–8. https://doi.org/10.1002/ffj.1859.

    Article  CAS  Google Scholar 

  24. Engel W, Bahr W, Schieberle P. Solvent assisted flavour evaporation—a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol. 1999;209(3-4):237–41. https://doi.org/10.1007/s002170050486.

    Article  CAS  Google Scholar 

  25. Bemelmans JMH. Review of isolation and Concentation techniques. London: Prog. Flavour Res.. Applied Science Publ; 1979.

    Google Scholar 

  26. van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 1963;11:463–71. https://doi.org/10.1016/s0021-9673(01)80947-x.

    Article  Google Scholar 

  27. Grosch W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses. 2001;26(5):533–45. https://doi.org/10.1093/chemse/26.5.533.

    Article  CAS  PubMed  Google Scholar 

  28. Buettner A, Schieberle P. Application of a comparative aroma extract dilution analysis to monitor changes in Orange juice aroma compounds during processing. In: Gas chromatography-Olfactometry, vol 782. ACS Symposium Series, vol 782. J Am Chem Soc. 2001;33–45. https://doi.org/10.1021/bk-2001-0782.ch004.

    Google Scholar 

  29. Hinterholzer A, Schieberle P. Identification of the most odour-active volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. Flavour Fragr J. 1998;13(1):49–55. https://doi.org/10.1002/(SICI)1099-1026(199801/02)13:1<49::AID-FFJ691>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  30. Czerny M, Buettner A. Odor-active compounds in cardboard. J Agric Food Chem. 2009;57(21):9979–84. https://doi.org/10.1021/jf901435n.

    Article  CAS  PubMed  Google Scholar 

  31. Laska M, Hudson R. A comparison of the detection thresholds of odour mixtures and their components. Chem Senses. 1991;16(6):651–62. https://doi.org/10.1093/chemse/16.6.651.

    Article  Google Scholar 

  32. Miyazawa T, Gallagher M, Preti G, Wise PM. Synergistic mixture interactions in detection of perithreshold odors by humans. Chem Senses. 2008;33(4):363–9. https://doi.org/10.1093/chemse/bjn004.

    Article  PubMed  Google Scholar 

  33. Guadagni DG, Buttery RG, Okano S, Burr HK. Additive effect of sub-threshold concentrations of some organic compounds associated with food aromas. Nature. 1963;200:1288. https://doi.org/10.1038/2001288a0.

    Article  CAS  PubMed  Google Scholar 

  34. Milanos S, Elsharif SA, Janzen D, Buettner A, Villmann C. Metabolic products of linalool and modulation of GABA(a) receptors. Front Chem. 2017;5:46. https://doi.org/10.3389/fchem.2017.00046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kessler A, Sahin-Nadeem H, Lummis SC, Weigel I, Pischetsrieder M, Buettner A, et al. GABA(A) receptor modulation by terpenoids from Sideritis extracts. Mol Nutr Food Res. 2014;58(4):851–62. https://doi.org/10.1002/mnfr.201300420.

    Article  CAS  PubMed  Google Scholar 

  36. Kessler A, Villmann C, Sahin-Nadeem H, Pischetsrieder M, Buettner A. GABAA receptor modulation by the volatile fractions of Sideritis species used as ‘Greek’ or ‘Turkish’ mountain tea. Flavour Fragr J. 2012;27 https://doi.org/10.1002/ffj.3099.

    Article  CAS  Google Scholar 

  37. Bordiga M, Piana G, Coïsson JD, Travaglia F, Arlorio M. Headspace solid-phase micro extraction coupled to comprehensive two-dimensional with time-of-flight mass spectrometry applied to the evaluation of Nebbiolo-based wine volatile aroma during ageing. Int J Food Sci Technol. 2014;49(3):787–96. https://doi.org/10.1111/ijfs.12366.

    Article  CAS  Google Scholar 

  38. Rogachev AD, Salakhutdinov NF. Chemical composition of Pinus sibirica (Pinaceae). Chem Biodivers. 2015;12(1):1–53. https://doi.org/10.1002/cbdv.201300195.

    Article  CAS  PubMed  Google Scholar 

  39. Schreiner L, Loos HM, Buettner A. Identification of odorants in wood of Calocedrus decurrens (Torr.) florin by aroma extract dilution analysis and two-dimensional gas chromatography–mass spectrometry/olfactometry. Anal Bioanal Chem. 2017;409(15):3719–29. https://doi.org/10.1007/s00216-017-0314-x.

    Article  CAS  PubMed  Google Scholar 

  40. Niebler J, Zhuravlova K, Minceva M, Buettner A. Fragrant Sesquiterpene ketones as trace constituents in frankincense volatile oil of Boswellia sacra. J Nat Prod. 2016;79(4):1160–4. https://doi.org/10.1021/acs.jnatprod.5b00836.

    Article  CAS  PubMed  Google Scholar 

  41. Setze WN. Volatile components of oak and cherry wood chips used in aging of beer, wine, and sprits. Am J Essent Oil Nat Prod. 2016;4(2):37–40.

    Google Scholar 

  42. Roffael E, Schneider T, Dix B. Effect of oxidising and reducing agents on the release of volatile organic compounds (VOCs) from strands made of Scots pine (Pinus sylvestris L.). Wood Sci Technol. 2015;49(5):957–67. https://doi.org/10.1007/s00226-015-0744-6.

    Article  CAS  Google Scholar 

  43. Sjöström E. Wood chemistry: Fundamentals and applications. New York: Academic; 1981.

    Google Scholar 

  44. Rodríguez Madrera R, Blanco Gomis D, Mangas Alonso JJ. Influence of distillation system, oak wood type, and aging time on composition of cider brandy in phenolic and Furanic compounds. J Agric Food Chem. 2003;51(27):7969–73. https://doi.org/10.1021/jf0347618.

    Article  CAS  PubMed  Google Scholar 

  45. Alañón ME, Ramos L, Díaz-Maroto MC, Pérez-Coello MS, Sanz J. Extraction of volatile and semi-volatile components from oak wood used for aging wine by miniaturised pressurised liquid technique. Int J Food Sci Technol. 2009;44(9):1825–35. https://doi.org/10.1111/j.1365-2621.2009.02006.x.

    Article  CAS  Google Scholar 

  46. Pe’rez-Coello MS, Sanz J, Cabezudo MD. Analysis of volatile components of oak wood by solvent extraction and direct thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A. 1997;778(1):427–34. https://doi.org/10.1016/S0021-9673(97)00286-0.

    Article  Google Scholar 

  47. Puech J-L. Phenolic compounds in oak wood extracts used in the ageing of brandies. J Sci Food Agric. 1988;42(2):165–72. https://doi.org/10.1002/jsfa.2740420209.

    Article  CAS  Google Scholar 

  48. Grote V. Positive health effects of stone pine furniture and bioinhibitoric effect. Joanneum Research; Springer Pub. Co., J. Hum. Res . 2015.

Download references

Acknowledgements

The authors would like to thank the sensory panelists from Fraunhofer IVV. We would also like to thank the Staedtler foundation for financial support of this study.

Funding

Staedtler foundation provided financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Buettner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study was conducted in agreement with the Declaration of Helsinki. The study (registration number 180_16B) was approved by the Ethical Committee of the Medical Faculty, Friedrich-Alexander Universität Erlangen-Nürnberg. Informed consent was obtained from all subjects participating in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiriasli, R., Wagenstaller, M. & Buettner, A. Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry. Anal Bioanal Chem 410, 6595–6607 (2018). https://doi.org/10.1007/s00216-018-1264-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1264-7

Keywords

Navigation