Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6507–6516 | Cite as

Synthesis and application of ratio fluorescence probe for chloride

  • Chen Ma
  • Fengyuan Zhang
  • Yaya Wang
  • Xinyue Zhu
  • Xiaoyan Liu
  • Chunyan Zhao
  • Haixia ZhangEmail author
Research Paper


As chloride ions (Cl) play a vital role in maintaining normal physiological activity, detection of chloride ions is quite urgent. Hence, we developed chloride fluorescence probes to highly selectively and sensitively monitor chloride ions. The probe M2 with single emission has a high fluorescence quantum yield (Φ = 45%), and it is capable of quantitative detection of Cl under physiological conditions (pH = 7.4) and pH = 5.0 with a linear range of 0.1–4.0 mM; nevertheless, it is of the switch-off type. We further synthesized a ratiometric fluorescent probe MY with M2 as raw material, which featured excellent selectivity and anti-interference, and large two-photon cross section (555 GM). The probe is conveniently used to detect Cl in water samples and biological samples including human sweat, serum, and urine samples, indicating it holds great promise for chloride detection and biological application.

Graphical abstract


Chloride ion Ratio fluorescence Biological detection 



This research was financially supported by the National Natural Science Foundation of China (No. 21575055) and the Research Funds for the Central Universities (lzujbky-2017-k09).

Compliance with ethical standards

The study using biological samples has been approved by the People’s hospital of Gansu province Ethics Committee and the Lanzhou University Ethics Committee, and has been performed in accordance with the ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1250_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2.56 mb)


  1. 1.
    Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. Inter Rev Cytol. 1995;161(16):173–262.CrossRefGoogle Scholar
  2. 2.
    Perron A, Mutoh H, Akemann W, Knöpfel A. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci. 2009;2(10):5.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ko SK, Kim SK, Lynch VM, Shin I. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem. 2014;6(10):885–92.CrossRefGoogle Scholar
  4. 4.
    Soto-Cerrato V, Manuel-Manresa P, Hernando E, et al. Facilitated anion transport induces hyperpolarization of the cell membrane that triggers differentiation and cell death in Cancer stem cells. J Am Chem Soc. 2015;137(50):15892.CrossRefPubMedGoogle Scholar
  5. 5.
    Stauber T, Jentsch TJ. Chloride in vesicular trafficking and function. Annu Rev Physiol. 2013;75(75):453–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Yu SP, Canzoniero LM, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Todde V, Veenhuis M, J I KVD. Autophagy: principles and significance in health and disease. BBA-Biomembranes. 2009;1792(1):3–13.PubMedGoogle Scholar
  8. 8.
    Koch MC, Steinmeyer K, Lorenz C, Jentsch TJ. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992;257(5071):797–800.CrossRefPubMedGoogle Scholar
  9. 9.
    Busschaert N, Park SH, Baek KH, Shin I. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat Chem. 2017;9(7):667.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O”Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–904.CrossRefGoogle Scholar
  12. 12.
    Cinti S, Fiore L, Massoud R, Cortese C, Arduini F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta. 2018:179–86.Google Scholar
  13. 13.
    Geddes CD, Apperson K, Karolin J, Birch DJS. Chloride-sensitive fluorescent indicators. Anal Biochem. 2001;293(1):60–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Pope AJ, Leigh RA. Characterisation of chloride transport at the tonoplast of higher plants using a chloride-sensitive fluorescent probe: effects of other anions, membrane potential, and transport inhibitors. Planta. 1990;181(3):406–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Jayaraman S, Teitler L, Skalski B, Verkman AS. Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. Am J Phys. 1999;277(1):1008–18.CrossRefGoogle Scholar
  16. 16.
    Arosio D, Ratto GM. Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci. 2014;8:258–8.Google Scholar
  17. 17.
    Markova O, Mukhtarov M, Real E, Jacob Y, Bregestovski P. Genetically encoded chloride indicator with improved sensitivity. J Neurosci Methods. 2010;170(1):67–76.CrossRefGoogle Scholar
  18. 18.
    Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of supramolecular anion recognition. Chem Rev. 2015;115(15):8038–155.CrossRefPubMedGoogle Scholar
  19. 19.
    Garrett GE, Gibson GL, Straus RN, Taylor MS. Chalcogen bonding in solution: interactions of Benzotelluradiazoles with anionic and uncharged Lewis bases. J Am Chem Soc. 2015;137(12):4126–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Lim JY, Marques I, Thompson AL, Beer PD. Chalcogen bonding macrocycles and Rotaxanes for anion recognition. J Am Chem Soc. 2017;139(8):3122.CrossRefPubMedGoogle Scholar
  21. 21.
    Sessler JL, Cai J, Gong HY, Hay BP. A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. J Am Chem Soc. 2010;132(132):14058–60.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Busschaert N, Kirby IL, Young S, Gale PA. Squaramides as potent transmembrane anion transporters. Angew Chem Int Edit. 2012;51(18):4426–30.CrossRefGoogle Scholar
  23. 23.
    Dickert FL, Schalley CA Ed: Analytical methods in supramolecular chemistry. Anal Bioanal Chem. 2007; 389(7–8):2039–2040.CrossRefGoogle Scholar
  24. 24.
    Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D. Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev. 2008;39(23):479–89.CrossRefGoogle Scholar
  25. 25.
    Yang ZR, Wang MM, Wang XS, Yin XB. Boric-acid-functional lanthanide metal-organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Anal Chem. 2017;89(3):1930.CrossRefPubMedGoogle Scholar
  26. 26.
    Yin HQ, Yang J, Yin XB. Ratiometric fluorescence sensing and real-time detection of water in organic solvents with one-pot synthesis of Ru@MIL-101(Al)-NH2. Anal Chem. 2017;89(24):13434–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Ashton TD, Jolliffe KA, Pfeffer FM. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev. 2015;44(14):4547–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Nolan EM, Lippard SJ. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc. 2007;129(18):5910–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wencel D, Moore JP, Stevenson N, McDonagh C. Ratiometric fluorescence-based dissolved carbon dioxide sensor for use in environmental monitoring applications. Anal Bioanal Chem. 2010;398(5):1899–907.CrossRefPubMedGoogle Scholar
  30. 30.
    Han X, Song X, Yu F, Chen L. A ratiometric fluorescent probe for imaging and quantifying anti-apoptotic effects of GSH under temperature stress. Chem Sci. 2017;8(10):6991–7002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li H, Wang X, Cai Z, Zhao P. Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Anal Bioanal Chem. 2017;409(28):1–8.CrossRefGoogle Scholar
  32. 32.
    Li P, Xie T, Fan N, Tang B. Ratiometric fluorescence imaging for distinguishing chloride concentration between normal and ischemic ventricular myocytes. Chem Commun. 2012;48(15):2077–9.CrossRefGoogle Scholar
  33. 33.
    Li P, Zhang S, Fan N, Tang B. Quantitative fluorescence ratio imaging of Intralysosomal chloride ions with single excitation/dual maximum emission. Chem-Eur J. 2014;20(37):11760–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS. Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct. 2005;750(1–3):174–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chen Ma
    • 1
  • Fengyuan Zhang
    • 1
  • Yaya Wang
    • 1
  • Xinyue Zhu
    • 1
  • Xiaoyan Liu
    • 1
  • Chunyan Zhao
    • 2
  • Haixia Zhang
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
  2. 2.School of PharmacyLanzhou UniversityLanzhouChina

Personalised recommendations