Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6497–6505 | Cite as

Quantification of Hv1-induced proton translocation by a lipid-coupled Oregon Green 488-based assay

  • Benjamin Gerdes
  • Rebecca M. Rixen
  • Kristina Kramer
  • Enrico Forbrig
  • Peter Hildebrandt
  • Claudia SteinemEmail author
Research Paper


Passive proton translocation across membranes through proton channels is generally measured with assays that allow a qualitative detection of the H+-transfer. However, if a quantitative and time-resolved analysis is required, new methods have to be developed. Here, we report on the quantification of pH changes induced by the voltage-dependent proton channel Hv1 using the commercially available pH-sensitive fluorophore Oregon Green 488-DHPE (OG488-DHPE). We successfully expressed and isolated Hv1 from Escherichia coli and reconstituted the protein in large unilamellar vesicles. Reconstitution was verified by surface enhanced infrared absorption (SEIRA) spectroscopy and proton activity was measured by a standard 9-amino-6-chloro-2-methoxyacridine assay. The quantitative OG488-DHPE assay demonstrated that the proton translocation rate of reconstituted Hv1 is much smaller than those reported in cellular systems. The OG488-DHPE assay further enabled us to quantify the KD-value of the Hv1-inhibitor 2-guanidinobenzimidazole, which matches well with that found in cellular experiments. Our results clearly demonstrate the applicability of the developed in vitro assay to measure proton translocation in a quantitative fashion; the assay allows to screen for new inhibitors and to determine their characteristic parameters.

Graphical abstract


ACMA assay Lipid-coupled fluorophore pH-sensitive dye Proton channel SEIRA 



We thank Prof. Dr. T. Friedrich for the Hv1 cDNA. We thank J. Gerber-Nolte for technical support.

Funding information

This study received financial support from the VW-foundation and the DFG (EXC314).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1248_MOESM1_ESM.pdf (834 kb)
ESM 1 (PDF 833 kb)


  1. 1.
    Decoursey TE. The voltage-gated proton channel: a riddle, wrapped in a mystery, inside an enigma. Biochemistry. 2015;54:3250–68.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Decoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the HV family. Physiol Rev. 2013;93:599–652.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Musset B, DeCoursey T. Biophysical properties of the voltage-gated proton channel Hv1. WIREs Membr Transp Signal. 2012;1:605–20.CrossRefGoogle Scholar
  4. 4.
    DeCoursey TE, Cherny VV. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J. 1993;65:1590–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cherny VV, Murphy R, Sokolov V, Levis RA, DeCoursey TE. Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement. J Gen Physiol. 2003;121:615–28.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee S-Y, Letts JA, MacKinnon R. Functional reconstitution of purified human Hv1 H+ channels. J Mol Biol. 2009;387:1055–60.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li Q, Shen R, Treger JS, Wanderling SS, Milewski W, Siwowska K, et al. Resting state of the human proton channel dimer in a lipid bilayer. Proc Natl Acad Sci U S A. 2015;112:E5926–35.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Feng Y, Forgac M. Proton conduction and bafilomycin binding by the V0 domain of the coated vesicle V-ATPase. J Biol Chem. 1994;269:23518–23.PubMedGoogle Scholar
  9. 9.
    Kemmer GC, Bogh SA, Urban M, Palmgren MG, Vosch T, Schiller J, et al. Lipid-conjugated fluorescent pH sensors for monitoring pH changes in reconstituted membrane systems. Analyst. 2015;140:6313–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Schwamborn M, Schumacher J, Sibold J, Teiwes NK, Steinem C. Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon green 488. Analyst. 2017;142:2670–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, et al. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science. 2016;351:1469–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong L, Pathak MM, Kim IH, Ta D, Tombola F. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains. Neuron. 2013;77:274–87.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Asuaje A, Smaldini P, Martin P, Enrique N, Orlowski A, Aiello EA, et al. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch - Eur J Physiol. 2017;469:251–61.CrossRefGoogle Scholar
  14. 14.
    Schägger H, Vonjagow G. Tricine sodium dodecyl-sulfate polyacrylamide-gel electrophoresis for the separation of proteins in the range from 1-Kda to 100-Kda. Anal Biochem. 1987;166:368–79.CrossRefPubMedGoogle Scholar
  15. 15.
    Han J, Burgess K. Fluorescent indicators for intracellular pH. Chem Rev. 2010;110:2709–28.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kozuch J, Steinem C, Hildebrandt P, Millo D. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes. Angew Chem Int Ed. 2012;51:8114–7.CrossRefGoogle Scholar
  17. 17.
    Kozuch J, Weichbrodt C, Millo D, Giller K, Becker S, Hildebrandt P, et al. Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Phys Chem Chem Phys. 2014;16:9546–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Wiebalck S, Kozuch J, Tzschucke C, Jeuken LIC, Hildebrandt P. A novel tethered bilayer lipid membrane tailored for the IR spectroscopic investigation of membrane proteins: monitoring catalysis of cytochrome cbo3. J Phys Chem B. 2016;120:2249–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Rostovtseva TK, Aguilella VM, Vodyanoy I, Bezrukov SM, Parsegian VA. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys J. 1998;75:1783–92.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sandén T, Salomonsson L, Brzezinski P, Widengren J. Surface-coupled proton exchange of a membrane-bound proton acceptor. Proc Natl Acad Sci U S A. 2010;107:4129–34.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cornelius F. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry. 2001;40:8842–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Rottenberg H, Moreno-Sanchez R. The proton pumping activity of H+-ATPases: an improved fluorescence assay. Biochim Biophys Acta Bioenerg. 1993;1183:161–70.CrossRefGoogle Scholar
  23. 23.
    Casadio R. Measurements of transmembrane pH differences of low extents in bacterial chromatophores. Eur Biophys J. 1991;19:189–201.CrossRefGoogle Scholar
  24. 24.
    Schuldiner S, Rottenberg H, Avron M. Determination of delta-pH in chloroplasts. 2. fluorescent amines as a probe for the determination of delta-pH in chloroplasts. Eur J Biochem. 1972;25:64-70.CrossRefPubMedGoogle Scholar
  25. 25.
    D'Alessandro M, Turina P, Melandri BA. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and Pi in the reconstituted ATP synthase of Escherichia coli. Biochim Biophys Acta. 2011;1807:130–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Branden M, Sanden T, Brzezinski P, Widengren J. Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci U S A. 2006;103:19766–70.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    DeCoursey TE. Voltage-gated proton channels. Cell Mol Life Sci. 2008;65:2554–73.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Musset B, Cherny VV, Morgan D, Okamura Y, Ramsey IS, Clapham DE, et al. Detailed comparison of expressed and native voltage-gated proton channel currents. J Physiol. 2008;586:2477–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    DeCoursey TE. Voltage-gated proton channels: what's next? J Physiol. 2008;586:5305–24.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramsey IS, Mokrab Y, Carvacho I, Sands ZA, Sansom MSP, Clapham DE. An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat Struct Mol Biol. 2010;17:869–75.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Seredenina T, Demaurex N, Krause K-H. Voltage-gated proton channels as novel drug targets: from NADPH oxidase regulation to sperm biology. Antioxid Redox Signal. 2015;23:490–513.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tombola F, Ulbrich MH, Isacoff EY. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron. 2008;58:546–56.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hong L, Kim IH, Tombola F. Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives. Proc Natl Acad Sci U S A. 2014;111:9971–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Organische und Biomolekulare ChemieUniversität GöttingenGöttingenGermany
  2. 2.Institut für ChemieTechnische Universität BerlinBerlinGermany
  3. 3.Max-Planck-Institut für Dynamik und SelbstorganisationGöttingenGermany

Personalised recommendations