Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6469–6475 | Cite as

Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing

  • Surya P. Singh
  • Soumavo Mukherjee
  • Luis H. Galindo
  • Peter T. C. So
  • Ramachandra Rao Dasari
  • Uzma Zubair Khan
  • Raghuraman Kannan
  • Anandhi UpendranEmail author
  • Jeon Woong KangEmail author
Research Paper


Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of research. Recent efforts in this direction have been inclined towards reducing the requirement of calibration framework. Here, we are presenting a systematic investigation on the influence of variation in the ratio of calibration and validation points on the prospective predictive accuracy of spectral models. A fiber-optic probe coupled Raman system has been employed for transcutaneous measurements. Limit of agreement analysis between serum and partial least square regression predicted spectroscopic glucose values has been performed for accurate comparison. Findings are suggestive of strong predictive accuracy of spectroscopic models without requiring substantive calibration measurements.

Graphical abstract


Diabetes Raman spectroscopy Glucose sensing Partial least squares regression 



This work is supported by NIH P41-EB015871-30 and Samsung Advanced Institute of Technology (Seoul, South Korea). PTCS acknowledge support from U01-NS090438-03, R21-NS091982-01, R01-HL121386-03, the Singapore-MIT Alliance 2 (Cambridge, MA, USA), the Biosym IRG of Singapore-MIT Alliance Research and Technology Center (Cambridge, MA, USA), and Hamamatsu Corporation (Hamamatsu City, Japan). AU thanks Professor Elizabeth J. Parks (Department of Nutrition and Exercise Physiology, and Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri-Columbia) for providing the YSI analyzer and Nhan T Le (Department of Nutrition and Exercise Physiology) for helping us with calibration and use of the instrument. Intramural Funding for this work was provided by Office of Medical Research, School of Medicine, University of Missouri-Columbia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    American Diabetes A. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46.CrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefGoogle Scholar
  3. 3.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefGoogle Scholar
  4. 4.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.CrossRefGoogle Scholar
  5. 5.
    American Diabetes A. Standards of medical care in diabetes—2009. Diabetes Care. 2009;32(Suppl 1):S13–61.CrossRefGoogle Scholar
  6. 6.
    Olansky L, Kennedy L. Finger-stick glucose monitoring: issues of accuracy and specificity. Diabetes Care. 2010;33(4):948–9.CrossRefGoogle Scholar
  7. 7.
    Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem. 1999;45(2):165–77.PubMedGoogle Scholar
  8. 8.
    Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors 2017; 17(8).Google Scholar
  9. 9.
    Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt AJ. Current and emerging technology for continuous glucose monitoring. Sensors 2017 ;17(1).Google Scholar
  10. 10.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;20(12):2555–65.CrossRefGoogle Scholar
  11. 11.
    Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.CrossRefGoogle Scholar
  12. 12.
    Wang HC, Lee AR. Recent developments in blood glucose sensors. J Food Drug Anal. 2015;23(2):191–200.CrossRefGoogle Scholar
  13. 13.
    Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther. 2004;6(5):660–97.CrossRefGoogle Scholar
  14. 14.
    Kong CR, Barman I, Dingari NC, Kang JW, Galindo L, Dasari RR, et al. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement. AIP Adv. 2011;1(3):32175.CrossRefGoogle Scholar
  15. 15.
    Berger AJ, Koo TW, Itzkan I, Feld MS. An enhanced algorithm for linear multivariate calibration. Anal Chem. 1998;70(3):623–7.CrossRefGoogle Scholar
  16. 16.
    Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Opt. 1999;38(13):2916–26.CrossRefGoogle Scholar
  17. 17.
    Enejder AM, Scecina TG, Oh J, Hunter M, Shih WC, Sasic S, et al. Raman spectroscopy for noninvasive glucose measurements. J Biomed Opt. 2005;10(3):031114.CrossRefGoogle Scholar
  18. 18.
    Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45(2):R1–59.CrossRefGoogle Scholar
  19. 19.
    Koo TW, Berger AJ, Itzkan I, Horowitz G, Feld MS. Reagentless blood analysis by near-infrared Raman spectroscopy. Diabetes Technol Ther. 1999;1(2):153–7.CrossRefGoogle Scholar
  20. 20.
    Shih WC, Bechtel KL, Rebec MV. Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt. 2015;20(5):051036.CrossRefGoogle Scholar
  21. 21.
    Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, et al. Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc Chem Res. 2017;50(2):264–72.CrossRefGoogle Scholar
  22. 22.
    Shao J, Lin M, Li Y, Li X, Liu J, Liang J, et al. In vivo blood glucose quantification using Raman spectroscopy. PLoS One. 2012;7(10):e48127.CrossRefGoogle Scholar
  23. 23.
    Scholtes-Timmerman MJ, Bijlsma S, Fokkert MJ, Slingerland R, van Veen SJ. Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring. J Diabetes Sci Technol. 2014;8(5):974–9.CrossRefGoogle Scholar
  24. 24.
    Lundsgaard-Nielsen SM, Pors A, Banke SO, Henriksen JE, Hepp DK, Weber A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One. 2018;13(5):e0197134.CrossRefGoogle Scholar
  25. 25.
    Lipson J, Bernhardt J, Block U, Freeman WR, Hofmeister R, Hristakeva M, et al. Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy. J Diabetes Sci Technol. 2009;3(2):233–41.CrossRefGoogle Scholar
  26. 26.
    Spegazzini N, Barman I, Dingari NC, Pandey R, Soares JS, Ozaki Y, et al. Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information. Sci Rep. 2014;4:7013.CrossRefGoogle Scholar
  27. 27.
    Qi D, Berger AJ. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Appl Opt. 2007;46(10):1726–34.CrossRefGoogle Scholar
  28. 28.
    Lui H, Zhao J, McLean D, Zeng H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 2012;72(10):2491–500.CrossRefGoogle Scholar
  29. 29.
    Clarke WL, Cox D, Gonderfrederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood-glucose. Diabetes Care. 1987;10(5):622–8.CrossRefGoogle Scholar
  30. 30.
    Stockl D, Dewitte K, Fierens C, Thienpont LM. Evaluating clinical accuracy of systems for self-monitoring of blood glucose by error grid analysis—comment on constructing the “upper A-line”. Diabetes Care. 2000;23(11):1711–2.CrossRefGoogle Scholar
  31. 31.
    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141–51.CrossRefGoogle Scholar
  32. 32.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRefGoogle Scholar
  33. 33.
    Galvao RK, Araujo MC, Jose GE, Pontes MJ, Silva EC, Saldanha TC. A method for calibration and validation subset partitioning. Talanta. 2005;67(4):736–40.CrossRefGoogle Scholar
  34. 34.
    Daszykowski M, Walczak B, Massart DL. Representative subset selection. Anal Chim Acta. 2002;468(1):91–103.CrossRefGoogle Scholar
  35. 35.
    Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L. Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: relevant differences among ISO 15197:2003, ISO 15197:2013, and current FDA recommendations. J Diabetes Sci Technol. 2015;9(4):885–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Surya P. Singh
    • 1
  • Soumavo Mukherjee
    • 2
  • Luis H. Galindo
    • 1
  • Peter T. C. So
    • 1
  • Ramachandra Rao Dasari
    • 1
  • Uzma Zubair Khan
    • 3
  • Raghuraman Kannan
    • 4
  • Anandhi Upendran
    • 5
    • 6
    Email author
  • Jeon Woong Kang
    • 1
    Email author
  1. 1.Laser Biomedical Research Center, G. R. Harrison Spectroscopy LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biological Engineering, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of Endocrinology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  4. 4.Department of Radiology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  5. 5.MU-institute of Clinical and Translational Sciences (MU-iCATS), School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  6. 6.Department of Pharmacology and Physiology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations