Skip to main content

Magnetic-assisted biotinylated single-chain variable fragment antibody-based immunoassay for amantadine detection in chicken

Abstract

A sensitive competitive immunoassay with simple operation was developed for the detection of the anti-virus drug amantadine (AMD). The single-chain variable fragment (scFv) antibody against AMD was site-specific biotinylated and overexpressed as a secreted body in Escherichia coli AVB101. Horseradish peroxidase-labeled streptavidin-biotinylated scFv antibody (HRP-SA-BIO-scFv) could specifically bind to AMD-functionalized magnetic beads (MBs) and then the immune complexes were separated from the matrix solution by magnet. The concentration of the AMD could be known by the measurement of the signal produced by the horseradish peroxidase. The newly established assay provides a significant improvement in comparison to the conventional ELISA without SA-BIO signal amplification and MBs separation. The limit of detection and assay time was 0.64 vs. 8.4 ng/mL and 50 vs. 150 min, respectively. The recoveries ranged from 77.8 to 112% with the coefficient of variation less than 13%. The immunoassay exhibited an obvious cross-reactivity to rimantadine (84%), 1-(1-adamantyl)ethylamine (72%), and somantadine (63%). These results demonstrated that the developed immunoassay provided a sensitive, rapid, and accurate approach for the detection of AMD in chicken by employing MBs as solid phase and SA-BIO as signal amplification. When applied in natural chicken samples, the newly established method provided results consistent with those from UPLC-MS/MS, suggesting that the proposed method could be used for rapid screening of the target of interest; the new immunoassay could also be extended to other small molecular contaminants and thus represents a universal strategy for food safety analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ziegler T, Hemphill ML, Ziegler ML, Perez-Oronoz G, Klimov AI, Hampson A, et al. Low incidence of rimantadine resistance in field isolates of influenza A viruses. J Infect Dis. 1999;180:935–9. https://doi.org/10.1086/314994.

    Article  CAS  PubMed  Google Scholar 

  2. Belshe RB, Smith MH, Hall CB, Betts R, Hay AJ. Genetic-basis of resistance to Rimantadine emerging during treatment of influenza-virus infection. J Virol. 1988;62:1508–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gasparini R, Amicizia D, Lai PL, Bragazzi NL, Panatto D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: influenza life-cycle and currently available drugs. J Prev Med Hyg. 2014;55:69–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsuruoka Y, Nakajima T, Kanda M, Hayashi H, Matsushima Y, Yoshikawa S, et al. Simultaneous determination of amantadine, rimantadine, and memantine in processed products, chicken tissues, and eggs by liquid chromatography with tandem mass spectrometry. J Chromatogr B. 2017;1044:142–8. https://doi.org/10.1016/j.jchromb.2017.01.014.

    Article  CAS  Google Scholar 

  5. Liu Z, Yang F, Yao M, Lin Y, Su Z. Simultaneous determination of antiviral drugs in chicken tissues by ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci. 2015;38:1784–93. https://doi.org/10.1002/jssc.201401461.

    Article  CAS  PubMed  Google Scholar 

  6. Higashi Y, Fujii Y. Liquid chromatographic determination of 1-adamantanamine and 2-adamantanamine in human plasma after pre-column derivatization with o-phthalaldehyde and 1-thio-beta-D-glucose. J Chromatogr B. 2004;799:349–54. https://doi.org/10.1016/j.jchromb.2003.10.062.

    Article  CAS  Google Scholar 

  7. Stumph MJ, Noall MW, Knight V. Gas-chromatographic determination of amantadine in human-urine. Clin Chem. 1980;26:295–6.

    CAS  PubMed  Google Scholar 

  8. Peng D, Wei W, Pan Y, Wang Y, Chen D, Liu Z, et al. Preparation of a monoclonal antibody against amantadine and rimantadine and development of an indirect competitive enzyme-linked immunosorbent assay for detecting the same in chicken muscle and liver. J Pharmaceut Biomed. 2017;133:56–63. https://doi.org/10.1016/j.jpba.2016.11.009.

    Article  CAS  Google Scholar 

  9. Xu L, Peng S, Liu L, Song S, Kuang H, Xu C. Development of sensitive and fast immunoassays for amantadine detection. Food Agric Immunol. 2016;27:678–88. https://doi.org/10.1080/09540105.2016.1148667.

    Article  CAS  Google Scholar 

  10. Wu S, Zhu F, Hu L, Xi J, Xu G, Liu D, et al. Development of a competitive immunochromatographic assay for the sensitive detection of amantadine in chicken muscle. Food Chem. 2017;232:770–6. https://doi.org/10.1016/j.foodchem.2017.04.058.

    Article  CAS  PubMed  Google Scholar 

  11. Liu A, Xiong Q, Shen L, Li W, Zeng Z, Li C, et al. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment. Food Control. 2017;79:156–61. https://doi.org/10.1016/j.foodcont.2017.03.042.

    Article  CAS  Google Scholar 

  12. Xu Z, Dong J, Wang H, Li Z, Beier RC, Jiang Y, et al. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay. J Agric Food Chem. 2012;60:5076–83. https://doi.org/10.1021/jf300570q.

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Majkova Z, Bever CR, Yang J, Gee SJ, Li J, et al. One-step immunoassay for Tetrabromobisphenol A using a camelid single domain antibody-alkaline phosphatase fusion protein. Anal Chem. 2015;87:4741–8. https://doi.org/10.1021/ac504735p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu C, Zhou H, Zhang W, Yang H, Tang J. Site-specific, covalent immobilization of BirA by microbial transglutaminase: a reusable biocatalyst for in vitro biotinylation. Anal Biochem. 2016;511:10–2. https://doi.org/10.1016/j.ab.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  15. Tang J, Tang Y, Yang H. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins. Anal Chim Acta. 2015;859:66–71. https://doi.org/10.1016/j.aca.2014.12.020.

    Article  CAS  PubMed  Google Scholar 

  16. Yang H, Bao R, Yu C, Lv Y, Zhang W, Tang J. Fc-specific biotinylation of antibody using an engineered photoactivatable Z-biotin and its biosensing application. Anal Chim Acta. 2017;949:76–82. https://doi.org/10.1016/j.aca.2016.10.039.

    Article  CAS  PubMed  Google Scholar 

  17. Fairhead M, Howarth M. Site-specific biotinylation of purified proteins using BirA. Methods Mol Biol (Clifton NJ). 2015;1266:171–84. https://doi.org/10.1007/978-1-4939-2272-7_12.

    Article  CAS  Google Scholar 

  18. Cull MG, Schatz PJ. Biotinylation of proteins in vivo and in vitro using small peptide tags. Applic Chimer Gene Hybrid Prot, PT A. 2000;326:430–40. https://doi.org/10.1016/S0076-6879(00)26068-0.

    CAS  Article  Google Scholar 

  19. Maeda Y, Yoshino T, Matsunaga T. In vivo biotinylation of bacterial magnetic particles by a truncated form of Escherichia coli biotin ligase and biotin acceptor peptide. Appl Environ Microbiol. 2010;76:5785–90. https://doi.org/10.1128/AEM.00916-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong J, Li Z, Lei H, Sun Y, Ducancel F, Xu Z, et al. Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork. Anal Chim Acta. 2012;736:85–91. https://doi.org/10.1016/j.aca.2012.05.033.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Wen K, Zhang X, Li X, Wang Z, Shen J, et al. New Hapten synthesis, antibody production, and indirect competitive enzyme-linked immunosorbent assay for amantadine in chicken muscle. Food Anal Method. 2017, 2017–07-23; https://doi.org/10.1007/s12161-017-1000-5.

  22. Froger A, Hall JE. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp : JoVE. 2007:253. doi: 10.3791/253. PubMed ID:18997900.

  23. Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Interfaces. 2014;6:3421–6. https://doi.org/10.1021/am405562c.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao C, Liu X, Mao S, Zhang L, Lu J. Sub-micron-sized polyethyleneimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions. Appl Surf Sci. 2017;394:378–85. https://doi.org/10.1016/j.apsusc.2016.10.116.

    Article  CAS  Google Scholar 

  25. Yan H, Liu X, Cui F, Yun H, Li J, Ding S, et al. Determination of amantadine and rimantadine in chicken muscle by QuEChERS pretreatment method and UHPLC coupled with LTQ Orbitrap mass spectrometry. J Chromatogr B. 2013;938:8–13. https://doi.org/10.1016/j.jchromb.2013.08.020.

    Article  CAS  Google Scholar 

  26. Xie J, Jiang H, Shen J, Peng T, Wang J, Yao K, et al. Design of multifunctional nanostructure for ultrafast extraction and purification of aflatoxins in foodstuffs. Anal Chem. 2017;89:10556–64. https://doi.org/10.1021/acs.analchem.7b02777.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Song M, Yu X, Wang Z, Ke Y, Jiang H, et al. Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control. 2017;79:309–16. https://doi.org/10.1016/j.foodcont.2017.02.049.

    Article  CAS  Google Scholar 

  28. Chen D, Miao H, Zhao Y, Wu Y. Dispersive micro solid phase extraction of amantadine, rimantadine and memantine in chicken muscle with magnetic cation exchange polymer. J Chromatogr B. 2017;1051:92–6. https://doi.org/10.1016/j.jchromb.2017.03.005.

    Article  CAS  Google Scholar 

  29. Wu H, Wang J, Yang H, Li G, Zeng Y, Xia W, et al. Development and application of an in-cell cleanup pressurized liquid extraction with ultra-high-performance liquid chromatography-tandem mass spectrometry to detect prohibited antiviral agents sensitively in livestock and poultry feces. J Chromatogr A. 2017;1488:10–6. https://doi.org/10.1016/j.chroma.2017.01.070.

    Article  CAS  PubMed  Google Scholar 

  30. Turnipseed SB, Storey JM, Andersen WC, Filigenzi MS, Heise AS, Lohne JJ, et al. Determination and confirmation of the antiviral drug amantadine and its analogues in chicken jerky pet treats. J Agric Food Chem. 2015;63:6968–78. https://doi.org/10.1021/acs.jafc.5b02416.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao F, Shen Q, Wang H, Han X, Yang Z. Development of a rapid magnetic bead-based immunoassay for sensitive detection of zearalenone. Food Control. 2017;79:227–33. https://doi.org/10.1016/j.foodcont.2017.03.051.

    Article  CAS  Google Scholar 

  32. Xie J, Sun Y, Zheng Y, Wang C, Sun S, Li J, et al. Preparation and application of immunoaffinity column coupled with dcELISA detection for aflatoxins in eight grain foods. Food Control. 2017;73:445–51. https://doi.org/10.1016/j.foodcont.2016.08.035.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31472236 and 31672600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and/or animal participation

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 2353 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Wen, K., Xie, J. et al. Magnetic-assisted biotinylated single-chain variable fragment antibody-based immunoassay for amantadine detection in chicken. Anal Bioanal Chem 410, 6197–6205 (2018). https://doi.org/10.1007/s00216-018-1227-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1227-z

Keywords

  • Immunoassay
  • Biotinylated scFv
  • Magnetic beads
  • Amantadine
  • Chicken