Skip to main content
Log in

Cross-reactivity by botanicals used in dietary supplements and spices using the multiplex xMAP food allergen detection assay (xMAP FADA)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Food allergies affect some 15 million Americans. The only treatment for food allergies is a strict avoidance diet. To help ensure the reliability of food labels, analytical methods are employed; the most common being enzyme-linked immunosorbent assays (ELISAs). However, the commonly employed ELISAs are single analyte-specific and cannot distinguish between false positives due to cross-reactive homologous proteins; making the method of questionable utility for regulatory purposes when analyzing for unknown or multiple food allergens. Also, should the need arise to detect additional analytes, extensive research must be undertaken to develop new ELISAs. To address these and other limitations, a multiplex immunoassay, the xMAP® food allergen detection assay (xMAP FADA), was developed using 30 different antibodies against 14 different food allergens plus gluten. Besides incorporating two antibodies for the detection of most analytes, the xMAP FADA also relies on two different extraction protocols; providing multiple confirmatory end-points. Using the xMAP FADA, the cross-reactivities of 45 botanicals used in dietary supplements and spices commercially sold in the USA were assessed. Only a few displayed cross-reactivities with the antibodies in the xMAP FADA at levels exceeding 0.0001%. The utility of the xMAP FADA was exemplified by its ability to detect and distinguish between betel nut, saw palmetto, and acai which are in the same family as coconut. Other botanicals examined included allspice, amchur, anise seed, black pepper, caraway seed, cardamom, cayenne red pepper, sesame seed, poppy seed, white pepper, and wheat grass. The combination of direct antibody detection, multi-antibody profiling, high sensitivity, and a modular design made it possible for the xMAP FADA to distinguish between homologous antigens, provide multiple levels of built-in confirmatory analysis, and optimize the bead set cocktail to address specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gupta RS, Springston EE, Warrier MR, Smith B, Kumar R, Pongracic J, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011;128:E9–E17. 4

    Article  PubMed  Google Scholar 

  2. Umasunthar T, Leonardi-Bee J, Hodes M, Turner PJ, Gore C, Habibi P, et al. Incidence of fatal food anaphylaxis in people with food allergy: a systematic review and meta-analysis. Clin Exp Allergy. 2013;43:1333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson J, Malinovschi A, Alving K, Lidholm J, Borres MP, Nordvall L. Ten-year review reveals changing trends and severity of allergic reactions to nuts and other foods. Acta Paediatr. 2014;103:862–7.

    Article  PubMed  Google Scholar 

  4. Koplin JJ, Mills ENC, Allen KJ. Epidemiology of food allergy and food-induced anaphylaxis: is there really a western world epidemic? Curr Opin Allergy Clin Immunol. 2015;15:409–16.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuo H, Yokooji T, Taogoshi T. Common food allergens and their IgE-binding epitopes. Allergol Int. 2015;64:332–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141:41–58.

    Article  CAS  PubMed  Google Scholar 

  7. Clark S, Espinola J, Rudders SA, Camargo CA Jr. Frequency of US emergency department visits for food-related acute allergic reactions. J Allergy Clin Immunol. 2011;127:682–3.

    Article  PubMed  Google Scholar 

  8. Clark S, Espinola JA, Rudders SA, Banerji A, Camargo CA Jr. Favorable trends in the frequency of U.S. emergency department visits for food allergy, 2001-2009. Allergy Asthma Proc. 2013;34:439–45.

    Article  PubMed  Google Scholar 

  9. Food Allergen Labeling and Consumer Protection Act of 2004 (FALCPA) Public Law 108–282, Title II. https://www.fda.gov/downloads/Food/GuidanceRegulation/UCM179394.pdf. Accessed 3 Mar 2018.

  10. Food Labeling. Gluten-Free Labeling of Foods 21 CFR Part 101 [Docket No. FDA-2005-N-0404] RIN 0910-AG84. Federal Register 78 (150, Monday, August 5, 2013) 47154–47179. 2013. http://www.gpo.gov/fdsys/pkg/FR-2013-08-05/pdf/2013-18813.pdf . Accessed 3 Mar 2018.

  11. Food Labeling. Gluten-Free Labeling of Fermented or Hydrolyzed Foods 21 CFR Part 101 [Docket No. FDA–2014–N–1021] RIN 0910–AH00. Federal Register 80 (222, Wednesday, November 18, 2015) 71990–72006. 2015. https://www.gpo.gov/fdsys/pkg/FR-2015-11-18/pdf/2015-29292.pdf. Accessed 3 Mar 2018.

  12. Garber EAE, Parker CH, Handy SM, Cho CY, Panda R, Samadpour M, et al. Presence of undeclared food allergens in cumin: the need for multiplex methods. J Agric Food Chem. 2016;64:1202–11.

    Article  CAS  PubMed  Google Scholar 

  13. Ahsan N, Rao RSP, Gruppuso PA, Ramratnam B, Salomon AR. Targeted proteomics: current status and future perspectives for quantification of food allergens. J Proteome. 2016;143:15–23.

    Article  CAS  Google Scholar 

  14. Caldwell JM. Food analysis using organelle DNA and the effects of processing on assays. Annu Rev Food Sci Technol. 2017;8:57–74.

    Article  CAS  PubMed  Google Scholar 

  15. Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV. Nano-biosensor platforms for detecting food allergens—new trends. Sens Biosensing Res. 2018;18:13–30.

    Article  Google Scholar 

  16. Kettman JR, Davies T, Chandler D, Oliver KG, Fulton RJ. Classification and properties of 64 multiplexed microsphere sets. Cytometry. 1998;33:234–43.

    Article  CAS  PubMed  Google Scholar 

  17. Oliver KG, Kettman JR, Fulton RJ. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin Chem. 1998;44:2057–60.

    CAS  PubMed  Google Scholar 

  18. Vignali DAA. Multiplexed particle-based flow cytometic assays. J Immunol Methods. 2000;243:243–55.

    Article  CAS  PubMed  Google Scholar 

  19. Dunbar SA, Zee CAV, Oliver KG, Karem KL, Jacobson JW. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP™ system. J Microbiol Methods. 2003;53:243–52.

    Article  CAS  Google Scholar 

  20. Houser B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview. Arch Physiol Biochem. 2012;118:192–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin A, Salvador A, Carter JM. Chapter 11, Multiplexed microsphere suspension array-based immunoassays. In: Hnasko R, editor. ELISA: Methods and Protocols, Methods in Molecular Biology, vol. 1318. New York: Springer Science+Business Media; 2015. p. 107–18.

    Chapter  Google Scholar 

  22. Haasnoot W, du Pré JG. Luminex-based triplex immunoassay for the simultaneous detection of soy, pea, and soluble wheat proteins in milk powder. J Agric Food Chem. 2007;55:3771–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hildebrandt S. Multiplexed identification of different fish species by detection of parvalbumin, a common fish allergen gene: a DNA application of multi-analyte profiling (xMAP) technology. Anal Bioanal Chem. 2010;397:1787–96.

    Article  CAS  PubMed  Google Scholar 

  24. Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015;175:585–92.

    Article  CAS  PubMed  Google Scholar 

  25. Otto G, Lamote A, Deckers E, Dumont V, Delahaut P, Scippo M-L, et al. A flow-cytometry-based method for detecting simultaneously five allergens in a complex food matrix. J Food Sci Technol. 2016;53:4179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho CY, Nowatzke W, Oliver K, Garber EAE. Multiplex detection of food allergens and gluten. Anal Bioanal Chem. 2015;407:4195–206. erratum 2016; 408: 6509–6510

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen RO, Peters T, Panda R, Wehling P, Garber EAE. Detection and antigenic profiling of undeclared peanut in imported garlic using an xMAP multiplex immunoassay for food allergens. J Food Prot. 2017;80:1204–13.

    Article  PubMed  Google Scholar 

  28. Cho CY, Oles C, Nowatzke W, Oliver K, Garber EAE. Cross-reactivity profiles of legumes and tree nuts using the xMAP® multiplex food allergen detection assay. Anal Bioanal Chem. 2017;409:5999–6014.

    Article  CAS  PubMed  Google Scholar 

  29. Cho CY, Puente-Lelievre C, Jones GD, Stadig S, Taylor DA, Eischeid A, et al. Application of multi-antigen profiling to detect pecan. J Food Prot. 2018;81 in-press

  30. Forouhar E, Sack P. Non-traditional therapies for diabetes: fact or fiction. J Community Hosp Intern Med Perspect. 2012;2:18447. https://doi.org/10.3402/jchimp.v2i2.18447.

    Article  Google Scholar 

  31. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39:283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lissiman E, Bhasale AL, Cohen M. Garlic for the common cold. Cochrane Database Syst Rev. 2014;11:CD006206.

    Google Scholar 

  33. Everstine K, Spink J, Kennedy S. Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. J Food Prot. 2013;76:723–35.

    Article  PubMed  Google Scholar 

  34. USDA National Nutrient Database for Standard Reference (Release 28, released September 2015, slightly revised May 2016) https://ndb.nal.usda.gov/ndb/search/list Accessed 02.26.2018. 45216054, Almonds, raw UPC: 087132501018; 12087, Cashew nuts, raw; 12104, Coconut meat, raw; 45035391, Brazil nuts, raw Markets of Meijer, UPC: 886926203424; 45260232, Shrimp large, raw UPC: 085239045800; 45034096, Shrimp, raw, Aqua Star UPC: 731149654068; 45035818, Shrimp, raw UPC: 886926484373; 15270, Shrimp, raw (not previously frozen); 01133, Egg, whole, dried; 45283512, Hazelnuts, raw, UPC: 064777815137; 16087, Peanuts, all types, raw; 45324025, Pine nuts, raw, whole UPC: 787359179372; 45117627, Pine nuts, raw, Ferris UPC: 788709630147; 12151, Pistachio nuts, raw; 45298852, Pistachio nuts, raw UPC: 886926468984; 45299009, Pistachio nuts, raw UPC: 078138005136; 45077383, 45282940, Soy beans, dry roasted edamame UPC: 064777815823; 16111, Soy beans, mature seeds, dry roasted; Soy beans, organic UPC: 074873163285; 45230532, Soy beans, organic UPC: 884853150422; 45255066, Soy beans, edamame UPC: 052851173082; 16115, Soy flour, full-fat, raw; 45066497, 45086019, Soy beans, freeze dried edamame veggie snack UPC: 859059002011; Walnut raw, pieces UPC: 070207015220; 45144359, Walnut, raw UPC: 085239814635; 45270898, Walnut, raw UPC: 739446400234; 48052, Vital wheat gluten; 45093201, Vital Wheat Gluten, UPC: 039978043221; 09078, Cranberries, raw.

  35. NIST, National Institute of Standards & Technology, report of investigation, reference material 8445, Spray-dried whole egg for allergen detection. 2013.

  36. Sigma-Aldrich, Gluten from Wheat, cat G5004, CAS Number 8002–80-0, https://www.sigmaaldrich.com/catalog/product/sigma/g5004?lang=en&region=US Accessed 03.10.2018.

  37. Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007;120:518–25.

    Article  CAS  PubMed  Google Scholar 

  38. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52. e1-e7

    Article  CAS  PubMed  Google Scholar 

  39. Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, et al. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). Ann Bot. 2011;108:1417–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garg A, Chaturvedi P, Gupta PC. A review of the systemic adverse effects of Areca nut or betel nut. Indian J Med Paediatr Oncol. 2014;35:3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Javed F, Correa FOB, Chotai M, Tappuni AR, Almas K. Systemic conditions associated with Areca nut usage: a literature review. Scandinavian J Public Health. 2010;38:838–44.

    Article  Google Scholar 

  42. Stutius LM, Sheehan WJ, Rangsithienchai P, Bharmanee A, Scott JE, Young MC, et al. Characterizing the relationship between sesame, coconut, and nut allergy in children. Pediatr Allergy Immunol. 2010;21:1114–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Teuber SS, Peterson WR. Systemic allergic reaction to coconut (Cocos nucifera) in 2 subjects with hypersensitivity to tree nut and demonstration of cross-reactivity to legumin-like seed storage proteins: new coconut and walnut food allergens. J Allergy Clin Immunol. 1999;103:1180–5.

    Article  CAS  PubMed  Google Scholar 

  44. Polk BI, Dinakarpandian D, Nanda M, Barnes C, Dinakar C. Association of tree nut and coconut sensitizations. Ann Allergy Asthma Immunol. 2016;117:412–6.

    Article  CAS  PubMed  Google Scholar 

  45. Garber EAE, Venkateswaran KV, O'Brien TW. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins a, B, and C in food. J Agric Food Chem. 2010;58:6600–7.

    Article  CAS  PubMed  Google Scholar 

  46. Govindarajan VS, Narasimhan S, Raghuveer KG, Lewis YS. Cardamom--production, technology, chemistry, and quality. Crit Rev Food Sci Nutr. 1982;16:229–326.

    Article  CAS  PubMed  Google Scholar 

  47. Worm M, Sturm G, Kleine-Tebbe J, Cichocka-Jarosz E, Cardona V, Maris I, et al. New trends in anaphylaxis. Allergo J Int. 2017;26:295–300.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goyal SN, Sharma C, Mahajan UB, Patil CR, Agrawal YO, Kumari S, et al. Protective effects of cardamom in isoproterenol-induced myocardial infarction in rats. Int J Mol Sci. 2015;16:27457–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matheu V, Baeza ML, Zubeldia JM, Barrios Y. Allergy to lingonberry: a case report. Clin Mol Allergy. 2004;2:2. https://doi.org/10.1186/1476-7961-2-2. Accessed 03.011.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dereci S, Orhan F, Koca T, Akcam M. Prevalence of blueberry allergy in a Turkish population. Ann Allergy Asthma Immunol. 2015;114:259–60.

    Article  PubMed  Google Scholar 

  51. Gebhardt C, Vieths S, Gubesch M, Averbeck M, Simon JC, Treudler R. 10 kDa lipid transfer protein: the main allergenic structure in a German patient with anaphylaxis to blueberry. Allergy. 2009;64:498–9.

    Article  CAS  PubMed  Google Scholar 

  52. Jagdis A, Sussman G. Anaphylaxis from bee pollen supplement. Can Med Assoc J. 2012;184:1167–9.

    Article  Google Scholar 

  53. Vieths S, Scheurer S, Ballmer-Weber B. Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci. 2002;964:47–68.

    Article  CAS  PubMed  Google Scholar 

  54. Shahali Y. Allergy after ingestion of bee-gathered pollen: influence of botanical origins. Ann Allergy Asthma Immunol. 2015;114:250–1.

    Article  PubMed  Google Scholar 

  55. Furmaniak MA, Misztak AE, Franczuk MD, Wilmotte A, Waleron M, Waleron KF. Edible cyanobacterial genus Arthrospira: actual state of the art in cultivation methods, genetics, and application in medicine. Front Microbiol. 2017;8:2541. https://doi.org/10.3389/fmicb.2017.02541.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Le TM, Knulst AC, Rockmann H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol. 2014;74:309–10.

    Article  CAS  PubMed  Google Scholar 

  57. Marzban G, Mansfeld A, Hemmer W, Stoyanova E, Katinger H, da Câmara Machado ML. Fruit cross-reactive allergens: a theme of uprising interest for consumers' health. Biofactors. 2005;23:235–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.O. Pedersen, Ph.D. was supported in part by an FDA Commissioner’s Fellowship. Our gratitude is expressed to Masahiro Shoji, Ph.D. (Morinaga Institute of Biological Sciences, Inc.); Mansour Samadpour, Ph.D. (IEH Laboratories and Consulting Group); Thomas Grace and John Leslie (BiaDiagnostics, LLC; Elution Technologies—3M Food Safety) for their openness and willingness to make resources available for the xMAP FADA. Gratitude is also expressed to Shaun MacMahon, Ph.D.; George C. Ziobro, Ph.D.; Rakhi Panda, Ph.D.; Prasad Rallabhandi, Ph.D.; and Lynn L.B. Rust Ph.D. (NIH) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. E. Garber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, R.O., Nowatzke, W.L., Cho, C.Y. et al. Cross-reactivity by botanicals used in dietary supplements and spices using the multiplex xMAP food allergen detection assay (xMAP FADA). Anal Bioanal Chem 410, 5791–5806 (2018). https://doi.org/10.1007/s00216-018-1187-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1187-3

Keywords

Navigation