Skip to main content
Log in

Rapid characterization of cocaine in illicit drug samples by 1D and 2D NMR spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Seized samples of illegally produced cocaine have a very large variability in composition; a fact that may result in a challenge to their analysis. We demonstrate here a simple and fast method to detect the presence of cocaine in both hydrochloride and free-base forms in illicit drug samples by nuclear magnetic resonance (NMR) spectroscopy. This is achieved by combining the commonly used 1D spectra and diffusion-ordered spectroscopy and introducing the 2D maximum-quantum NMR approach to forensic analysis. The protocol allows the facile determination of the cocaine forms even in the presence of multiple adulterants. By relying on non-uniform sampling acceleration of 2D spectroscopy, the identification can be obtained in less than 3 min for 10 mg of product. Moreover, we show that intermolecular interactions of the sample constituents, while affecting the analysis result, do not interfere with the quality of the detection of the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. In: Vienna LaSSUNOoDaC, editor. Manual for use by national drug analysis laboratories. New York: UNITED NATIONS, New York; 2012.

  2. Evrard I, Legleye S, Cadet-Tairou A. Composition, purity and perceived quality of street cocaine in France. Int J Drug Policy. 2010;21(5):399–406. https://doi.org/10.1016/j.drugpo.2010.03.004.

    Article  PubMed  Google Scholar 

  3. Fucci N. Unusual adulterants in cocaine seizured on Italian clandestine market. Forensic Sci Int. 2007;172(2–3):E1-E. https://doi.org/10.1016/j.forsciint.2007.05.021.

    Article  Google Scholar 

  4. Schneider S, Meys F. Analysis of illicit cocaine and heroin samples seized in Luxembourg from 2005-2010. Forensic Sci Int. 2011;212(1–3):242–6. https://doi.org/10.1016/j.forsciint.2011.06.027.

    Article  CAS  PubMed  Google Scholar 

  5. Lurie IS, Hays PA, Garcia AE, Panicker S. Use of dynamically coated capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis. J Chromatogr A. 2004;1034(1–2):227–35. https://doi.org/10.1016/j.chroma.2004.01.062.

    Article  CAS  PubMed  Google Scholar 

  6. Lurie IS, Sottolano SM, Blasof S. High-performance liquid-chromatographic analysis of heroin by reverse phase ion-pair chromatography. J Forensic Sci. 1982;27(3):519–26.

    Article  CAS  PubMed  Google Scholar 

  7. Lurie IS, Toske SG. Applicability of ultra-performance liquid chromatography-tandem mass spectrometry for heroin profiling. J Chromatogr A. 2008;1188(2):322–6. https://doi.org/10.1016/j.chroma.2008.03.011.

    Article  CAS  PubMed  Google Scholar 

  8. Debrus B, Broseus J, Guillarme D, Lebrun P, Hubert P, Veuthey JL, et al. Innovative methodology to transfer conventional GC-MS heroin profiling to UHPLC-MS/MS. Anal Bioanal Chem. 2011;399(8):2719–30. https://doi.org/10.1007/s00216-010-4282-7.

    Article  CAS  PubMed  Google Scholar 

  9. Reddy GNM, Caldarelli S. Identification and quantification of EPA 16 priority polycyclic aromatic hydrocarbon pollutants by maximum-quantum NMR. Analyst. 2012;137(3):741–6. https://doi.org/10.1039/C1AN16047H.

    Article  CAS  PubMed  Google Scholar 

  10. Gama LA, Merlo BB, Lacerda V, Romao W, Neto AC. No-deuterium proton NMR (no-D NMR): a simple, fast and powerful method for analyses of illegal drugs. Microchem J. 2015;118:12–8. https://doi.org/10.1016/j.microc.2014.07.014.

    Article  CAS  Google Scholar 

  11. Pagano B, Lauri I, De Tito S, Persico G, Chini MG, Malmendal A, et al. Use of NMR in profiling of cocaine seizures. Forensic Sci Int. 2013;231(1–3):120–4. https://doi.org/10.1016/j.forsciint.2013.04.028.

    Article  CAS  PubMed  Google Scholar 

  12. Stejskal EO. aJET. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):4. https://doi.org/10.1063/1.1695690.

    Article  Google Scholar 

  13. Tanner JE. Use of the stimulated echo in NMR diffusion studies. J Chem Phys. 1970;52. https://doi.org/10.1063/1.1673336.

  14. Stilbs P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc. 1987;19:1–45. https://doi.org/10.1016/0079-6565(87)80007-9.

    Article  CAS  Google Scholar 

  15. Stilbs P. Molecular self-diffusion coefficients in Fourier-transform nuclear magnetic-resonance spectrometric analysis of complex-mixtures. Anal Chem. 1981;53(13):2135–7. https://doi.org/10.1021/Ac00236a044.

    Article  CAS  Google Scholar 

  16. Barjat H, Morris GA, Smart S, Swanson AG, Williams SCR. High-resolution diffusion-ordered 2d spectroscopy (hr-dosy)—a new tool for the analysis of complex-mixtures. J Magn Reson Ser B. 1995;108(2):170–2. https://doi.org/10.1006/jmrb.1995.1118.

    Article  CAS  Google Scholar 

  17. Morris KF, Johnson CS. Diffusion-ordered 2-dimensional nuclear-magnetic-resonance spectroscopy. J Am Chem Soc. 1992;114(8):3139–41. https://doi.org/10.1021/Ja00034a071.

    Article  CAS  Google Scholar 

  18. Morris KF, Stilbs P, Johnson CS. Analysis of mixtures based on molecular-size and hydrophobicity by means of diffusion-ordered 2d NMR. Anal Chem. 1994;66(2):211–5. https://doi.org/10.1021/Ac00074a006.

    Article  CAS  Google Scholar 

  19. Balayssac S, Retailleau E, Bertrand G, Escot MP, Martino R, Malet-Martino M, et al. Characterization of heroin samples by H-1 NMR and 2D DOSY H-1 NMR. Forensic Sci Int. 2014;234:29–38. https://doi.org/10.1016/j.forsciint.2013.10.025.

    Article  CAS  PubMed  Google Scholar 

  20. Antalek B. Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn Reson. 2002;14(4):225–58. https://doi.org/10.1002/cmr.10026.

    Article  CAS  Google Scholar 

  21. Manjunatha Reddy GN, Caldarelli S. Demixing of severely overlapping NMR spectra through multiple-quantum NMR. Anal Chem. 2010;82(8):3266–9. https://doi.org/10.1021/ac100009y.

    Article  CAS  PubMed  Google Scholar 

  22. Reddy GNM, Caldarelli S. Maximum-quantum (MaxQ) NMR for the speciation of mixtures of phenolic molecules. Chem Commun. 2011;47(14):4297–9. https://doi.org/10.1039/c1cc10226e.

    Article  CAS  Google Scholar 

  23. Wokaun A, Ernst RR. Use of multiple quantum transitions for relaxation studies in coupled spin systems. Mol Phys. 1978;36(2):317–41. https://doi.org/10.1080/00268977800101601.

    Article  CAS  Google Scholar 

  24. Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC. Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys. 2012;14(31):10835–43. https://doi.org/10.1039/c2cp40174f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bax A, Dejong PG, Mehlkopf AF, Smidt J. Separation of the different orders of NMR multiple-quantum transitions by the use of pulsed field gradients. Chem Phys Lett. 1980;69(3):567–70. https://doi.org/10.1016/0009-2614(80)85130-x.

    Article  CAS  Google Scholar 

  26. Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115(2):260–4. https://doi.org/10.1006/jmra.1995.1176.

    Article  CAS  Google Scholar 

  27. Nilsson M. The DOSY toolbox: a new tool for processing PFG NMR diffusion data. J Magn Reson. 2009;200(2):296–302. https://doi.org/10.1016/j.jmr.2009.07.022.

    Article  CAS  PubMed  Google Scholar 

  28. Feike M, Demco DE, Graf R, Gottwald J, Hafner S, Spiess HW. Broadband multiple-quantum NMR spectroscopy. J Magn Reson Ser A. 1996;122(2):214–21. https://doi.org/10.1006/jmra.1996.0197.

    Article  CAS  Google Scholar 

  29. Reddy GNM, Caldarelli S. Improved excitation uniformity in multiple-quantum NMR experiments of mixtures. Magn Reson Chem. 2013;51(4):240–4. https://doi.org/10.1002/mrc.3938.

    Article  CAS  Google Scholar 

  30. Kocher SS, Heydenreich T, Zhang Y, Reddy GNM, Caldarelli S, Yuan H, et al. Time-optimal excitation of maximum quantum coherence: physical limits and pulse sequences. J Chem Phys. 2016;144(16):164103. https://doi.org/10.1063/1.4945781.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Yemloul or Stefano Caldarelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yemloul, M., Adyatmika, I.M., Caldarelli, S. et al. Rapid characterization of cocaine in illicit drug samples by 1D and 2D NMR spectroscopy. Anal Bioanal Chem 410, 5237–5244 (2018). https://doi.org/10.1007/s00216-018-1175-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1175-7

Keywords

Navigation