Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 21, pp 5237–5244 | Cite as

Rapid characterization of cocaine in illicit drug samples by 1D and 2D NMR spectroscopy

  • Mehdi Yemloul
  • I. Made Adyatmika
  • Stefano Caldarelli
  • Denis Ollivier
  • Mylène Campredon
Research Paper

Abstract

Seized samples of illegally produced cocaine have a very large variability in composition; a fact that may result in a challenge to their analysis. We demonstrate here a simple and fast method to detect the presence of cocaine in both hydrochloride and free-base forms in illicit drug samples by nuclear magnetic resonance (NMR) spectroscopy. This is achieved by combining the commonly used 1D spectra and diffusion-ordered spectroscopy and introducing the 2D maximum-quantum NMR approach to forensic analysis. The protocol allows the facile determination of the cocaine forms even in the presence of multiple adulterants. By relying on non-uniform sampling acceleration of 2D spectroscopy, the identification can be obtained in less than 3 min for 10 mg of product. Moreover, we show that intermolecular interactions of the sample constituents, while affecting the analysis result, do not interfere with the quality of the detection of the proposed protocol.

Keywords

DOSY NMR MaxQ-NMR 1H-NMR Cocaine Adulterants 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1175_MOESM1_ESM.pdf (176 kb)
ESM 1 (PDF 175 kb)

References

  1. 1.
    Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. In: Vienna LaSSUNOoDaC, editor. Manual for use by national drug analysis laboratories. New York: UNITED NATIONS, New York; 2012.Google Scholar
  2. 2.
    Evrard I, Legleye S, Cadet-Tairou A. Composition, purity and perceived quality of street cocaine in France. Int J Drug Policy. 2010;21(5):399–406.  https://doi.org/10.1016/j.drugpo.2010.03.004.CrossRefGoogle Scholar
  3. 3.
    Fucci N. Unusual adulterants in cocaine seizured on Italian clandestine market. Forensic Sci Int. 2007;172(2–3):E1-E.  https://doi.org/10.1016/j.forsciint.2007.05.021.CrossRefGoogle Scholar
  4. 4.
    Schneider S, Meys F. Analysis of illicit cocaine and heroin samples seized in Luxembourg from 2005-2010. Forensic Sci Int. 2011;212(1–3):242–6.  https://doi.org/10.1016/j.forsciint.2011.06.027. CrossRefGoogle Scholar
  5. 5.
    Lurie IS, Hays PA, Garcia AE, Panicker S. Use of dynamically coated capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis. J Chromatogr A. 2004;1034(1–2):227–35.  https://doi.org/10.1016/j.chroma.2004.01.062.CrossRefGoogle Scholar
  6. 6.
    Lurie IS, Sottolano SM, Blasof S. High-performance liquid-chromatographic analysis of heroin by reverse phase ion-pair chromatography. J Forensic Sci. 1982;27(3):519–26.CrossRefGoogle Scholar
  7. 7.
    Lurie IS, Toske SG. Applicability of ultra-performance liquid chromatography-tandem mass spectrometry for heroin profiling. J Chromatogr A. 2008;1188(2):322–6.  https://doi.org/10.1016/j.chroma.2008.03.011.CrossRefGoogle Scholar
  8. 8.
    Debrus B, Broseus J, Guillarme D, Lebrun P, Hubert P, Veuthey JL, et al. Innovative methodology to transfer conventional GC-MS heroin profiling to UHPLC-MS/MS. Anal Bioanal Chem. 2011;399(8):2719–30.  https://doi.org/10.1007/s00216-010-4282-7.CrossRefGoogle Scholar
  9. 9.
    Reddy GNM, Caldarelli S. Identification and quantification of EPA 16 priority polycyclic aromatic hydrocarbon pollutants by maximum-quantum NMR. Analyst. 2012;137(3):741–6.  https://doi.org/10.1039/C1AN16047H.CrossRefGoogle Scholar
  10. 10.
    Gama LA, Merlo BB, Lacerda V, Romao W, Neto AC. No-deuterium proton NMR (no-D NMR): a simple, fast and powerful method for analyses of illegal drugs. Microchem J. 2015;118:12–8.  https://doi.org/10.1016/j.microc.2014.07.014.CrossRefGoogle Scholar
  11. 11.
    Pagano B, Lauri I, De Tito S, Persico G, Chini MG, Malmendal A, et al. Use of NMR in profiling of cocaine seizures. Forensic Sci Int. 2013;231(1–3):120–4.  https://doi.org/10.1016/j.forsciint.2013.04.028.CrossRefGoogle Scholar
  12. 12.
    Stejskal EO. aJET. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):4.  https://doi.org/10.1063/1.1695690. CrossRefGoogle Scholar
  13. 13.
    Tanner JE. Use of the stimulated echo in NMR diffusion studies. J Chem Phys. 1970;52.  https://doi.org/10.1063/1.1673336.
  14. 14.
    Stilbs P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc. 1987;19:1–45.  https://doi.org/10.1016/0079-6565(87)80007-9.CrossRefGoogle Scholar
  15. 15.
    Stilbs P. Molecular self-diffusion coefficients in Fourier-transform nuclear magnetic-resonance spectrometric analysis of complex-mixtures. Anal Chem. 1981;53(13):2135–7.  https://doi.org/10.1021/Ac00236a044.CrossRefGoogle Scholar
  16. 16.
    Barjat H, Morris GA, Smart S, Swanson AG, Williams SCR. High-resolution diffusion-ordered 2d spectroscopy (hr-dosy)—a new tool for the analysis of complex-mixtures. J Magn Reson Ser B. 1995;108(2):170–2.  https://doi.org/10.1006/jmrb.1995.1118.CrossRefGoogle Scholar
  17. 17.
    Morris KF, Johnson CS. Diffusion-ordered 2-dimensional nuclear-magnetic-resonance spectroscopy. J Am Chem Soc. 1992;114(8):3139–41.  https://doi.org/10.1021/Ja00034a071.CrossRefGoogle Scholar
  18. 18.
    Morris KF, Stilbs P, Johnson CS. Analysis of mixtures based on molecular-size and hydrophobicity by means of diffusion-ordered 2d NMR. Anal Chem. 1994;66(2):211–5.  https://doi.org/10.1021/Ac00074a006.CrossRefGoogle Scholar
  19. 19.
    Balayssac S, Retailleau E, Bertrand G, Escot MP, Martino R, Malet-Martino M, et al. Characterization of heroin samples by H-1 NMR and 2D DOSY H-1 NMR. Forensic Sci Int. 2014;234:29–38.  https://doi.org/10.1016/j.forsciint.2013.10.025.CrossRefGoogle Scholar
  20. 20.
    Antalek B. Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn Reson. 2002;14(4):225–58.  https://doi.org/10.1002/cmr.10026.CrossRefGoogle Scholar
  21. 21.
    Manjunatha Reddy GN, Caldarelli S. Demixing of severely overlapping NMR spectra through multiple-quantum NMR. Anal Chem. 2010;82(8):3266–9.  https://doi.org/10.1021/ac100009y.CrossRefGoogle Scholar
  22. 22.
    Reddy GNM, Caldarelli S. Maximum-quantum (MaxQ) NMR for the speciation of mixtures of phenolic molecules. Chem Commun. 2011;47(14):4297–9.  https://doi.org/10.1039/c1cc10226e.CrossRefGoogle Scholar
  23. 23.
    Wokaun A, Ernst RR. Use of multiple quantum transitions for relaxation studies in coupled spin systems. Mol Phys. 1978;36(2):317–41.  https://doi.org/10.1080/00268977800101601.CrossRefGoogle Scholar
  24. 24.
    Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC. Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys. 2012;14(31):10835–43.  https://doi.org/10.1039/c2cp40174f.CrossRefGoogle Scholar
  25. 25.
    Bax A, Dejong PG, Mehlkopf AF, Smidt J. Separation of the different orders of NMR multiple-quantum transitions by the use of pulsed field gradients. Chem Phys Lett. 1980;69(3):567–70.  https://doi.org/10.1016/0009-2614(80)85130-x.CrossRefGoogle Scholar
  26. 26.
    Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115(2):260–4.  https://doi.org/10.1006/jmra.1995.1176.CrossRefGoogle Scholar
  27. 27.
    Nilsson M. The DOSY toolbox: a new tool for processing PFG NMR diffusion data. J Magn Reson. 2009;200(2):296–302.  https://doi.org/10.1016/j.jmr.2009.07.022.CrossRefGoogle Scholar
  28. 28.
    Feike M, Demco DE, Graf R, Gottwald J, Hafner S, Spiess HW. Broadband multiple-quantum NMR spectroscopy. J Magn Reson Ser A. 1996;122(2):214–21.  https://doi.org/10.1006/jmra.1996.0197.CrossRefGoogle Scholar
  29. 29.
    Reddy GNM, Caldarelli S. Improved excitation uniformity in multiple-quantum NMR experiments of mixtures. Magn Reson Chem. 2013;51(4):240–4.  https://doi.org/10.1002/mrc.3938.CrossRefGoogle Scholar
  30. 30.
    Kocher SS, Heydenreich T, Zhang Y, Reddy GNM, Caldarelli S, Yuan H, et al. Time-optimal excitation of maximum quantum coherence: physical limits and pulse sequences. J Chem Phys. 2016;144(16):164103.  https://doi.org/10.1063/1.4945781.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2MarseilleFrance
  2. 2.Service Commun des Laboratoires du Ministère des Finances, Laboratoire de MarseilleMarseilleFrance

Personalised recommendations