Skip to main content
Log in

Electrochemical nonenzymatic sensor for cholesterol determination in food

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The treatment of some inborn metabolism errors requires cholesterol substitution therapy. Cholesterol plays a vital role in the human body. Therefore, the majority of cholesterol determination techniques are targeted to blood and blood serum. Nevertheless, cholesterol determination in food is important as well. In this paper, cholesterol determination using differential pulse voltammetry (DPV) in dairy products (e.g., milk, clotted cream, yogurt, butter, etc.) is reported with a novel nonenzymatic sensor based on diphosphonic acid of 1,4-diacetylglycoluril (DPADGU) as an electrode surface modifier. Stable anodic response was obtained from cholesterol on the modified carbon-based electrode. The sensor has high stability, sensitivity (20 μA mol L−1 cm−2), and a wide linear range from 1 up to 200 μM. The LOD and LOQ values are 1.5 and 5.1 μM, respectively. The developed methods were successfully applied to the above mentioned dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Korade Z, Folkes OM, Harrison FE. Behavioral and serotonergic response changes in the Dhcr7-HET mouse model of Smith–Lemli–Opitz syndrome. Pharmacol Biochem Behav. 2013;106:101–8. https://doi.org/10.1016/j.pbb.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  2. Merkens MJ, Sinden N, Brown CD, Merkens LS, Roullet J-B, Nguyen T, et al. Feeding impairments associated with plasma sterols in Smith-Lemli-Opitz syndrome. J Pediatr. 2014;165:836–41. https://doi.org/10.1016/j.jpeds.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merkens LS, Jordan JM, Penfield JA, Luetjohann D, Connor WE, Steiner RD. Plasma plant sterol levels do not reflect cholesterol absorption in children with Smith-Lemli-Opitz syndrome. J Pediatr. 2009;154:557–61. https://doi.org/10.1016/j.jpeds.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  4. Pasta S, Akhile O, Tabron D, Ting F, Shackeleton C, Watson G. Delivery of the 7-dehydrocholesterol reductase gene to the central nervous system using adeno-associated virus vector in a mouse model of Smith-Lemli-Opitz syndrome. Mol Genet Metab Rep. 2015;4:92–8. https://doi.org/10.1016/j.ymgmr.2015.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ying L, Matabosch X, Serra M, Watson B, Shackeleton C, Watson G. Biochemical and physiological improvement in a mouse model of Smith–Lemli–Opitz syndrome (SLOS) following gene transfer with AAV vectors. Mol Genet Metab Rep. 2014;1:103–13. https://doi.org/10.1016/j.ymgmr.2014.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Becker S, Röhnike S, Empting S, Haas D, Mohnike K, Beblo S, et al. LC–MS/MS-based quantification of cholesterol and related metabolites in dried blood for the screening of inborn errors of sterol metabolism. Anal Bioanal Chem. 2015;407:5227–33. https://doi.org/10.1007/s00216-015-8731-1.

    Article  CAS  PubMed  Google Scholar 

  7. Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD. The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome. Am J Med Genet. 2006;140:1511–8. https://doi.org/10.1002/ajmg.a.

    Article  PubMed  Google Scholar 

  8. Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI. Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet. 2000;98:191–200. https://doi.org/10.1002/1096-8628(20010115)98:2<191::Aid-Ajmg1030>3.0.Co;2-M.

    Article  Google Scholar 

  9. Kawamoto H, Yu O, Maekawa M, Shimada M, Mano N, Iida T. An efficient synthesis of 4α- and 4β-hydroxy- 7-dehydrocholesterol, biomarkers for patients with and animal models of the Smith–Lemli–Opitz syndrome. Chem Phys Lipids. 2013;175:73–8. https://doi.org/10.1016/j.chemphyslip.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  10. Korade Z, Xu L, Harrison FE, Ahsen R, Hart SE, Folkes OM, et al. Porter NA antioxidant supplementation ameliorates molecular deficits in Smith-Lemli-Opitz syndrome. Biol Psychiatry. 2014;75:215–22211. https://doi.org/10.1016/j.biopsych.2013.06.013.

    Article  CAS  PubMed  Google Scholar 

  11. Gonçalves Albuquerque T, Oliveira M, Sanches-Silva A, Costa HS. Cholesterol determination in foods: comparison between high performance and ultra-high performance liquid chromatography. Food Chem. 2016;193:18–25. https://doi.org/10.1016/j.foodchem.2014.09.109.

    Article  CAS  Google Scholar 

  12. Amaral C, Gallardo E, Rodrigues R, Pinto Leite R, Quelhas D, Tomaz C, et al. Quantitative analysis of five sterols in amniotic fluid by GC–MS: application to the diagnosis of cholesterol biosynthesis defects. J Chromatogr B. 2010;878:2130–6. https://doi.org/10.1016/j.jchromb.2010.06.010.

    Article  CAS  Google Scholar 

  13. Buszewska-Forajta M, Bujak R, Yumba-Mpanga A, Siluk D, Kaliszan R. GC/MS technique and AMDIS software application in identification of hydrophobic compounds of grasshoppers’ abdominal secretion (Chorthippusspp). J Pharm Biomed Anal. 2015;102:331–9. https://doi.org/10.1016/j.jpba.2014.09.039.

    Article  CAS  PubMed  Google Scholar 

  14. Saraiva D, Semedo R, da Conceição Castilho M, Silva JM, Ramos F. Selection of the derivatization reagent—the case of human blood cholesterol, its precursors and phytosterols GC–MS analyses. J Chromatogr B. 2011;879:3806–11. https://doi.org/10.1016/j.jchromb.2011.10.021.

    Article  CAS  Google Scholar 

  15. Hernández D, González M, Astudillo P, Hernández L, González F. Modification of carbon electrodes by anodic oxidation of organic anions. Procedia Chem. 2014;12:3–8. https://doi.org/10.1016/j.proche.2014.12.034.

    Article  CAS  Google Scholar 

  16. Yao C, Sun H, Fu H-F, Tan Z-C. Sensitive simultaneous determination of nitrophenol isomers at poly(p-aminobenzene sulfonic acid) film modified graphite electrode. Electrochim Acta. 2015;156:163–70. https://doi.org/10.1016/j.electacta.2015.01.043.

    Article  CAS  Google Scholar 

  17. Oldham KB, Myland JC, Bond AM. Electrochemical science and technology: fundamentals and applications. New York: Wiley; 2012. 413 p

    Google Scholar 

  18. Wang W, Bai H, Li H, Lv Q, Zhang Q, Wang S. Carbon tape coated with gold film as stickers for bulk fabrication of disposable gold electrodes to detect Cr(VI). Sensors Actuators B Chem. 2016;236:218–25. https://doi.org/10.1016/j.snb.2016.05.155.

    Article  CAS  Google Scholar 

  19. Sajid M, Nazal M, Mansha M, Alsharaa A, Jillani S, Basheer C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC. 2016;76:15–29. https://doi.org/10.1016/j.trac.2015.09.006.

    Article  CAS  Google Scholar 

  20. Morzycki JW, Sobkowiak A. Electrochemical oxidation of cholesterol. Beilstein J Org Chem. 2015;11:392–402. https://doi.org/10.3762/bjoc.11.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shakhmaeva I, Saifullina D, Sattarova L, Abdullin T. Electrochemical sensor for blood deoxyribonucleases: design and application to the diagnosis of autoimmune thyroiditis. Anal Bioanal Chem. 2011;401(76):2591–7. https://doi.org/10.1007/s00216-011-5335-2.

    Article  CAS  PubMed  Google Scholar 

  22. Sal’keeva LK, Taishibekova EK, Bakibaev AA, Minaeva EV, Makin BK, Sugralina LM, et al. New phosphorylated Glycoluril derivatives. Russ J Gen Chem. 2017;87(3):442–6. https://doi.org/10.1134/s1070363217030124.

    Article  CAS  Google Scholar 

  23. Noskova GN, Zakharova EA, Chernov VI, Zaichko AV, Elesova EE. Kabakaev AS fabrication and application of gold microelectrode ensemble based on carbon black–polyethylene composite electrode. Anal Methods. 2011;3(5):11–30. https://doi.org/10.1039/c1ay05074e.

    Article  CAS  Google Scholar 

  24. Ahn J-H, Jeong I-S, Kwak B-M, Leem D, Yoon T, Yoon C, et al. Rapid determination of cholesterol in milk containing emulsified foods. Food Chem. 2012;135:2411–7. https://doi.org/10.1016/j.foodchem.2012.07.060.

    Article  CAS  PubMed  Google Scholar 

  25. Steven JT, Golovko VB, Johannessen B, Marshall AT. Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry. Electrochim Acta. 2016;187:593–604. https://doi.org/10.1016/j.electacta.2015.11.096.

    Article  CAS  Google Scholar 

  26. Gennaro A, Isse AA, Giussani E, Mussini PR, Primerano I, Rossi M. Relationship between supporting electrolyte bulkiness and dissociative electron transfer at catalytic and non-catalytic electrodes. Electrochim Acta. 2013;89:52–62. https://doi.org/10.1016/j.electacta.2012.11.013.

    Article  CAS  Google Scholar 

  27. Pasciak EM, Hochstetler SE, Mubarak MS, Evans DS, Peters DG. Electrochemical reduction of phthalide at carbon cathodes in dimethylformamide: effects of supporting electrolyte and gas chromatographic injector-port chemistry on the product distribution. Electrochim Acta. 2013;113:557–63. https://doi.org/10.1016/j.electacta.2013.09.124.

    Article  CAS  Google Scholar 

  28. Marichev VA. Reversibility of platinum voltammograms in aqueous electrolytes and ionic product of water. Electrochim Acta. 2008;53:7952–60. https://doi.org/10.1016/j.electacta.2008.05.076.

    Article  CAS  Google Scholar 

  29. Wang Y, Tian L, Yao Z, Li F, Li S, Ye S. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim Acta. 2015;163:71–6. https://doi.org/10.1016/j.electacta.2015.02.151.

    Article  CAS  Google Scholar 

  30. Xu X, Feng Y, Li J, Li F, Yu H. A novel protocol for covalent immobilization of thionine on glassy carbon electrode and its application in hydrogen peroxide biosensor. Biosens Bioelectron. 2010;25:2324–8. https://doi.org/10.1016/j.bios.2010.03.027.

    Article  CAS  PubMed  Google Scholar 

  31. Magnusson B, Örnemark U (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014). Available from http://www.eurachem.orgMagnusson

  32. Chen Y-Z, Kao S-Y, Jian H-C, Yu Y-M, Li J-Y, Wang W-H, et al. Determination of cholesterol and four phytosterols in foods without derivatization by gas chromatography-tandem mass spectrometry. J Food Drug Anal. 2015;23:636–44. https://doi.org/10.1016/j.jfda.2015.01.010.

    Article  CAS  PubMed  Google Scholar 

  33. Xu X-H, Li R-K, Chen J, Chen P, X-Ya L, Rao P-F. Quantification of cholesterol in foods using non-aqueous capillary electrophoresis. J Chromatogr B. 2002;768:369–73. https://doi.org/10.1016/S0378-4347(01)00539-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was partly funded from the State program «Science» (project No. 4.5752.2017) and the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant. JB thanks for financial support of Grant Agency of the Czech Republic (project P206/12/G151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Derina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No humans are involved in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derina, K., Korotkova, E., Taishibekova, Y. et al. Electrochemical nonenzymatic sensor for cholesterol determination in food. Anal Bioanal Chem 410, 5085–5092 (2018). https://doi.org/10.1007/s00216-018-1164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1164-x

Keywords

Navigation