Skip to main content
Log in

Sensitive electrochemical detection of sodium azide based on the electrocatalytic activity of the pasting liquid of a carbon paste electrode

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sodium azide (NaN3) is highly toxic and widely used in, for example, automobile airbags and biochemical laboratories. The electrochemical detection of sodium azide on commonly used electrodes is challenging due to sluggish electron transfer, but it has been achieved using a boron-doped diamond thin-film electrode and a highly oriented pyrolytic graphite electrode. Utilizing the electrocatalytic activity of the pasting liquid of a carbon paste electrode, we developed an effective method for the electrochemical detection of sodium azide in which silicone oil was employed as the pasting liquid of the carbon paste electrode. This simple and cheap silicone-oil-based carbon paste electrode exhibited comparable sensitivity to the boron-doped diamond thin-film electrode and highly oriented pyrolytic graphite electrode. The limit of detection for sodium azide at the silicone-oil-based carbon paste electrode was found to be 0.1 μM. Recoveries from diluted human serum samples were between 97.2 and 101.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dalmia A, Savinell RF, Liu CC. The anodic behavior of azide ions on gold and platinum electrodes in neutral electrolyte. J Electrochem Soc. 1996;143(6):1827–33.

    Article  CAS  Google Scholar 

  2. Betterton EA. Environmental fate of sodium azide derived from automobile airbags. Crit Rev Environ Sci Technol. 2003;33(4):423–58.

    Article  CAS  Google Scholar 

  3. Xu JZ, Swain GM. Oxidation of azide anion at boron-doped diamond thin-film electrodes. Anal Chem. 1998;70(8):1502–10.

    Article  CAS  Google Scholar 

  4. Annable PL, Sly LA. Azide determination in protein samples by ion chromatography. J Chromatogr. 1991;546(1–2):325–34.

    Article  CAS  PubMed  Google Scholar 

  5. Kage S, Kudo K, Ikeda N. Determination of azide in blood and urine by gas chromatography-mass spectrometry. J Anal Toxicol. 2000;24(6):429–32.

    Article  CAS  PubMed  Google Scholar 

  6. Tsuge K, Kataoka M, Seto Y. Rapid determination of cyanide and azide in beverages by microdiffusion spectrophotometric method. J Anal Toxicol. 2001;25(4):228–36.

    Article  CAS  PubMed  Google Scholar 

  7. Sezginturk MK, Goktug T, Dinckaya E. A biosensor based on catalase for determination of highly toxic chemical azide in fruit juices. Biosens Bioelectron. 2005;21(4):684–8.

    Article  CAS  PubMed  Google Scholar 

  8. Leech D, Daigle F. Optimisation of a reagentless laccase electrode for the detection of the inhibitor azide. Analyst. 1998;123(10):1971–4.

    Article  CAS  PubMed  Google Scholar 

  9. Daigle F, Trudeau F, Robinson G, Smyth MR, Leech D. Mediated reagentless enzyme inhibition electrodes. Biosens Bioelectron. 1998;13(3–4):417–25.

    Article  CAS  Google Scholar 

  10. Wang K, Friscourt F, Dai C, Wang L, Zheng Y, Boons GJ, et al. A metal-free turn-on fluorescent probe for the fast and sensitive detection of inorganic azides. Bioorg Med Chem Lett. 2016;26(7):1651–4.

  11. Dalmia A, Wasmus S, Savinell RF, Liu CC. The anodic behavior of azide ions at carbon electrodes in neutral electrolyte. J Electrochem Soc. 1996;143(2):556–60.

    Article  CAS  Google Scholar 

  12. Suzuki A, Ivandini TA, Kamiya A, Nomura S, Yamanuki M, Matsumoto K, et al. Direct electrochemical detection of sodium azide in physiological saline buffers using highly boron-doped diamond electrodes. Sensor Actuators B Chem. 2007;120(2):500–7.

  13. Xu JS, Swain GM. Voltammetric and amperometric investigations of azide oxidation at the basal plane of highly oriented pyrolytic graphite. Anal Chem. 1999;71(20):4603–8.

    Article  CAS  Google Scholar 

  14. Svancara I, Walcarius A, Kalcher K, Vytras K. Carbon paste electrodes in the new millennium. Cent Eur J Chem. 2009;7(4):598–656.

    CAS  Google Scholar 

  15. Munoz J, Baeza M. Customized bio-functionalization of nanocomposite carbon paste electrodes for electrochemical sensing: a mini review. Electroanalysis. 2017;29(7):1660–9.

    Article  CAS  Google Scholar 

  16. Adams RN. Carbon paste electrodes. Anal Chem. 1958;30(9):1576–6.

  17. Vytřas K, Svancara I, Metelka R. Carbon paste electrodes in electroanalytical chemistry. J Serb Chem Soc. 2009;74(10):1021–33.

    Article  CAS  Google Scholar 

  18. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (nos. 21675148 and 21505128), the Natural Science Foundation of Guangxi Province of China (project no. 2015GXNSFFA139005), the National Key Research and Development Program of China (no. 2016YFA0201300), and the CAS-TWAS (Academy of Sciences for the Developing World) President’s Fellowship for International PhD Students is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang, Jianping Li or Guobao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Han, M., Wu, F. et al. Sensitive electrochemical detection of sodium azide based on the electrocatalytic activity of the pasting liquid of a carbon paste electrode. Anal Bioanal Chem 410, 4953–4957 (2018). https://doi.org/10.1007/s00216-018-1144-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1144-1

Keywords

Navigation