Skip to main content
Log in

Toward continuous amperometric gas sensing in ionic liquids: rationalization of signal drift nature and calibration methods

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sensor signal drift is the key issue for the reliability of continuous gas sensors. In this paper, we characterized the sensing signal drift of an amperometric ionic liquid (IL)-based oxygen sensor to identify the key chemical parameters that contribute to the signal drift. The signal drifts due to the sensing reactions of the analyte oxygen at the electrode/electrolyte interface at a fixed potential and the mass transport of the reactant and product at the electrode/electrolyte interface were systematically studied. Results show that the analyte concentration variation and the platinum electrode surface activity are major factors contributing to sensing signal drift. An amperometric method with a double potential step incorporating a conditioning step was tested and demonstrated to be useful in reducing the sensing signal drift and extending the sensor operation lifetime. Also, a mathematic method was tested to calibrate the baseline drift and sensing signal sensitivity change for continuous sensing. This study provides the understanding of the chemical processes that contribute to the IL electrochemical gas (IL-EG) sensor signal stability and demonstrates some effective strategies for signal drift calibration that can increase the reliability of the continuous amperometric sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moeller DW, Moeller DW (2009) Environmental health. Harvard University Press, Cambridge, Massachusetts and London, England

  2. Wang Z, Guo M, Baker GA, Stetter JR, Lin L, Mason AJ, et al. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification. Analyst. 2014;139:5140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Lin P, Baker GA, Stetter J, Zeng X. Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. Anal Chem. 2011;83:7066–73.

    Article  CAS  PubMed  Google Scholar 

  4. Mu X, Wang Z, Zeng X, Mason AJ. A robust flexible electrochemical gas sensor using room temperature ionic liquid. IEEE Sensors J. 2013;13:3976–81.

    Article  CAS  Google Scholar 

  5. Xiao C, Rehman A, Zeng X. Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing. Anal Chem. 2012;84:1416–24.

    Article  CAS  PubMed  Google Scholar 

  6. Tang Y, Lin L, Kumar A, Guo M, Sevilla M, Zeng X. Hydrogen electrooxidation in ionic liquids catalyzed by the NTf2 radical. J Phys Chem C. 2017;121:5161–7.

    Article  CAS  Google Scholar 

  7. Tang Y, Zeng X. Electrochemical oxidation of hydrogen in Bis (trifluoromethylsulfonyl) imide ionic liquids under anaerobic and aerobic conditions. J Phys Chem C. 2016;120:23542–51.

    Article  CAS  Google Scholar 

  8. Tang Y, Wang Z, Chi X, Sevilla MD, Zeng X. In situ generated platinum catalyst for methanol oxidation via electrochemical oxidation of Bis (trifluoromethylsulfonyl) imide anion in ionic liquids at anaerobic condition. J Phys Chem C Nanomater Interfaces. 2015;120:1004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin L, Rehman A, Chi X, Zeng X. 2, 4-Toluene diisocyanate detection in liquid and gas environments through electrochemical oxidation in an ionic liquid. Analyst. 2016;141:1519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem. 2012;166:320–9.

    Article  CAS  Google Scholar 

  11. Buzzeo MC, Hardacre C, Compton RG. Use of room temperature ionic liquids in gas sensor design. Anal Chem. 2004;76:4583–8.

    Article  CAS  PubMed  Google Scholar 

  12. Silvester DS. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst. 2011;136:4871–82.

    Article  CAS  PubMed  Google Scholar 

  13. Stetter JR, Penrose WR. Understanding chemical sensors and chemical sensor arrays (electronic noses): past, present, and future. Sensors Updat. 2002;10:189.

    Article  CAS  Google Scholar 

  14. Holmberg M, Winquist F, Lundström I, Davide F, DiNatale C, D’Amico A. Drift counteraction for an electronic nose. Sensors Actuators B Chem. 1996;36:528–35.

    Article  CAS  Google Scholar 

  15. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, et al. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip. 2012;12:153–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lu L, Zhao P, Mason A, Zeng X. Characterization of the IL-electrode interfacial relaxation processes under potential polarization for ionic liquid amperometric gas sensor method development. ACS Sensors. 2018. https://doi.org/10.1021/acssensors.8b00155.

  17. Fonollosa J, Neftci E, Huerta R, Marco S. Evaluation of calibration transfer strategies between metal oxide gas sensor arrays. Procedia Eng. 2015;120:261–4. https://www.sciencedirect.com/science/article/pii/S187770581502264X

  18. Arshak K, Moore E, Lyons GM, Harris J, Clifford S. A review of gas sensors employed in electronic nose applications. Sens Rev. 2004;24:181–98.

    Article  Google Scholar 

  19. Li Z, Liu H, Liu Y, He P, Li J. A room temperature ionic-liquid-templated proton-conducting gelatinous electrolyte. J Phys Chem B. 2004;108:17512–8.

    Article  CAS  Google Scholar 

  20. Liu Y, Li J, Wang M, Li Z, Liu H, He P, et al. Preparation and properties of nanostructure anatase TiO2 monoliths using 1-butyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquids as template solvents. Cryst Growth Des. 2005;5:1643–9. http://pubs.rsc.org/en/content/articlelanding/2005/cc/b501224d/unauth#!divAbstract

  21. Yu L, Garcia D, Ren R, Zeng X. Ionic liquid high temperature gas sensors. Chem Commun. 2005;0:2277–79.

  22. Endres F, El Abedin SZ. Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys. 2006;8:2101–16.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong L, Aldous L, Henstridge MC, Compton RG. Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids. Anal Methods. 2012;4:371–6.

    Article  CAS  Google Scholar 

  24. Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG. Voltammetry of oxygen in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] imide and hexyltriethylammonium bis [(trifluoromethyl) sulfonyl] imide: one-electron reduction to form superoxide. Steady-state and tr. J Phys Chem A. 2003;107:8872–8.

    Article  CAS  Google Scholar 

  25. Xiao C, Rehman A, Zeng X. Evaluation of the dynamic electrochemical stability of ionic liquid--metal interfaces against reactive oxygen species using an in situ electrochemical quartz crystal microbalance. RSC Adv. 2015;5:31826–36.

    Article  CAS  Google Scholar 

  26. Campbell JL, Rustad LE, Porter JH, Taylor JR, Dereszynski EW, Shanley JB, et al. Quantity is nothing without quality: automated QA/QC for streaming environmental sensor data. Bioscience. 2013;63:574–85.

    Article  Google Scholar 

  27. Wenzel MJ, Mensah-Brown A, Josse F, Yaz EE. Online drift compensation for chemical sensors using estimation theory. IEEE Sensors J. 2011;11:225–32.

    Article  CAS  Google Scholar 

  28. Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J Electrochem Soc. 2004;151:A2016–27.

    Article  CAS  Google Scholar 

  29. Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta. 2006;556:38–45.

    Article  CAS  PubMed  Google Scholar 

  30. Bard AJ, Faulkner LR, et al. Fundamentals and applications. Electrochem Methods, 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  31. Parsons R. The kinetics of electrode reactions and the electrode material. Surf Sci. 1964;2:418–35.

    Article  CAS  Google Scholar 

  32. Jewell RC. Platinum in the glass industry. Platin Met Rev. 1964;8:122–7.

    Google Scholar 

  33. Adelman WJ, Palti Y. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969;54:589–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aspelund A, Jordal K. Gas conditioning—the interface between CO2 capture and transport. Int J Greenh Gas Control. 2007;1:343–54.

    Article  CAS  Google Scholar 

  35. Schwenke H, Schmitt R, Jatzkowski P, Warmann C. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Ann Technol. 2009;58:477–80.

    Article  Google Scholar 

  36. Hasenfratz D, Saukh O, Thiele L (2012) On-the-fly calibration of low-cost gas sensors. In: European Conference on Wireless Sensor Networks. pp. 228–244

  37. Gutierrez-Osuna R (2003) Signal processing methods for drift compensation. In: 2nd NOSE II Workshop Linköping. pp. 18–21

Download references

Acknowledgements

X. Zeng acknowledges grant support from the National Institute of Environmental Health (R01ES022302) and the Alpha Foundation AFC518-2 for this research. The authors thank Dr. Xiaojun Liu and Dr. Jessica Koppen for helpful comments and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqun Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest of this work.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zeng, X. Toward continuous amperometric gas sensing in ionic liquids: rationalization of signal drift nature and calibration methods. Anal Bioanal Chem 410, 4587–4596 (2018). https://doi.org/10.1007/s00216-018-1090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1090-y

Keywords

Navigation