Analytical and Bioanalytical Chemistry

, Volume 410, Issue 19, pp 4587–4596 | Cite as

Toward continuous amperometric gas sensing in ionic liquids: rationalization of signal drift nature and calibration methods

  • Lu Lin
  • Xiangqun Zeng
Paper in Forefront
Part of the following topical collections:
  1. Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry


Sensor signal drift is the key issue for the reliability of continuous gas sensors. In this paper, we characterized the sensing signal drift of an amperometric ionic liquid (IL)-based oxygen sensor to identify the key chemical parameters that contribute to the signal drift. The signal drifts due to the sensing reactions of the analyte oxygen at the electrode/electrolyte interface at a fixed potential and the mass transport of the reactant and product at the electrode/electrolyte interface were systematically studied. Results show that the analyte concentration variation and the platinum electrode surface activity are major factors contributing to sensing signal drift. An amperometric method with a double potential step incorporating a conditioning step was tested and demonstrated to be useful in reducing the sensing signal drift and extending the sensor operation lifetime. Also, a mathematic method was tested to calibrate the baseline drift and sensing signal sensitivity change for continuous sensing. This study provides the understanding of the chemical processes that contribute to the IL electrochemical gas (IL-EG) sensor signal stability and demonstrates some effective strategies for signal drift calibration that can increase the reliability of the continuous amperometric sensing.

Graphical Abstract


Gas sensors Ionic liquid Continuous sensing Signal drift Calibration 



X. Zeng acknowledges grant support from the National Institute of Environmental Health (R01ES022302) and the Alpha Foundation AFC518-2 for this research. The authors thank Dr. Xiaojun Liu and Dr. Jessica Koppen for helpful comments and proofreading.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest of this work.

Supplementary material

216_2018_1090_MOESM1_ESM.pdf (579 kb)
ESM 1 (PDF 578 kb)


  1. 1.
    Moeller DW, Moeller DW (2009) Environmental health. Harvard University Press, Cambridge, Massachusetts and London, EnglandGoogle Scholar
  2. 2.
    Wang Z, Guo M, Baker GA, Stetter JR, Lin L, Mason AJ, et al. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification. Analyst. 2014;139:5140–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang Z, Lin P, Baker GA, Stetter J, Zeng X. Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. Anal Chem. 2011;83:7066–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Mu X, Wang Z, Zeng X, Mason AJ. A robust flexible electrochemical gas sensor using room temperature ionic liquid. IEEE Sensors J. 2013;13:3976–81.CrossRefGoogle Scholar
  5. 5.
    Xiao C, Rehman A, Zeng X. Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing. Anal Chem. 2012;84:1416–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Tang Y, Lin L, Kumar A, Guo M, Sevilla M, Zeng X. Hydrogen electrooxidation in ionic liquids catalyzed by the NTf2 radical. J Phys Chem C. 2017;121:5161–7.CrossRefGoogle Scholar
  7. 7.
    Tang Y, Zeng X. Electrochemical oxidation of hydrogen in Bis (trifluoromethylsulfonyl) imide ionic liquids under anaerobic and aerobic conditions. J Phys Chem C. 2016;120:23542–51.CrossRefGoogle Scholar
  8. 8.
    Tang Y, Wang Z, Chi X, Sevilla MD, Zeng X. In situ generated platinum catalyst for methanol oxidation via electrochemical oxidation of Bis (trifluoromethylsulfonyl) imide anion in ionic liquids at anaerobic condition. J Phys Chem C Nanomater Interfaces. 2015;120:1004–12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin L, Rehman A, Chi X, Zeng X. 2, 4-Toluene diisocyanate detection in liquid and gas environments through electrochemical oxidation in an ionic liquid. Analyst. 2016;141:1519–29.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem. 2012;166:320–9.CrossRefGoogle Scholar
  11. 11.
    Buzzeo MC, Hardacre C, Compton RG. Use of room temperature ionic liquids in gas sensor design. Anal Chem. 2004;76:4583–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Silvester DS. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst. 2011;136:4871–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Stetter JR, Penrose WR. Understanding chemical sensors and chemical sensor arrays (electronic noses): past, present, and future. Sensors Updat. 2002;10:189.CrossRefGoogle Scholar
  14. 14.
    Holmberg M, Winquist F, Lundström I, Davide F, DiNatale C, D’Amico A. Drift counteraction for an electronic nose. Sensors Actuators B Chem. 1996;36:528–35.CrossRefGoogle Scholar
  15. 15.
    Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, et al. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip. 2012;12:153–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Lu L, Zhao P, Mason A, Zeng X. Characterization of the IL-electrode interfacial relaxation processes under potential polarization for ionic liquid amperometric gas sensor method development. ACS Sensors. 2018.
  17. 17.
    Fonollosa J, Neftci E, Huerta R, Marco S. Evaluation of calibration transfer strategies between metal oxide gas sensor arrays. Procedia Eng. 2015;120:261–4.
  18. 18.
    Arshak K, Moore E, Lyons GM, Harris J, Clifford S. A review of gas sensors employed in electronic nose applications. Sens Rev. 2004;24:181–98.CrossRefGoogle Scholar
  19. 19.
    Li Z, Liu H, Liu Y, He P, Li J. A room temperature ionic-liquid-templated proton-conducting gelatinous electrolyte. J Phys Chem B. 2004;108:17512–8.CrossRefGoogle Scholar
  20. 20.
    Liu Y, Li J, Wang M, Li Z, Liu H, He P, et al. Preparation and properties of nanostructure anatase TiO2 monoliths using 1-butyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquids as template solvents. Cryst Growth Des. 2005;5:1643–9.!divAbstract
  21. 21.
    Yu L, Garcia D, Ren R, Zeng X. Ionic liquid high temperature gas sensors. Chem Commun. 2005;0:2277–79.Google Scholar
  22. 22.
    Endres F, El Abedin SZ. Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys. 2006;8:2101–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Xiong L, Aldous L, Henstridge MC, Compton RG. Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids. Anal Methods. 2012;4:371–6.CrossRefGoogle Scholar
  24. 24.
    Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG. Voltammetry of oxygen in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] imide and hexyltriethylammonium bis [(trifluoromethyl) sulfonyl] imide: one-electron reduction to form superoxide. Steady-state and tr. J Phys Chem A. 2003;107:8872–8.CrossRefGoogle Scholar
  25. 25.
    Xiao C, Rehman A, Zeng X. Evaluation of the dynamic electrochemical stability of ionic liquid--metal interfaces against reactive oxygen species using an in situ electrochemical quartz crystal microbalance. RSC Adv. 2015;5:31826–36.CrossRefGoogle Scholar
  26. 26.
    Campbell JL, Rustad LE, Porter JH, Taylor JR, Dereszynski EW, Shanley JB, et al. Quantity is nothing without quality: automated QA/QC for streaming environmental sensor data. Bioscience. 2013;63:574–85.CrossRefGoogle Scholar
  27. 27.
    Wenzel MJ, Mensah-Brown A, Josse F, Yaz EE. Online drift compensation for chemical sensors using estimation theory. IEEE Sensors J. 2011;11:225–32.CrossRefGoogle Scholar
  28. 28.
    Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J Electrochem Soc. 2004;151:A2016–27.CrossRefGoogle Scholar
  29. 29.
    Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta. 2006;556:38–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Bard AJ, Faulkner LR, et al. Fundamentals and applications. Electrochem Methods, 2nd ed. New York: Wiley; 2001.Google Scholar
  31. 31.
    Parsons R. The kinetics of electrode reactions and the electrode material. Surf Sci. 1964;2:418–35.CrossRefGoogle Scholar
  32. 32.
    Jewell RC. Platinum in the glass industry. Platin Met Rev. 1964;8:122–7.Google Scholar
  33. 33.
    Adelman WJ, Palti Y. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969;54:589–606.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Aspelund A, Jordal K. Gas conditioning—the interface between CO2 capture and transport. Int J Greenh Gas Control. 2007;1:343–54.CrossRefGoogle Scholar
  35. 35.
    Schwenke H, Schmitt R, Jatzkowski P, Warmann C. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Ann Technol. 2009;58:477–80.CrossRefGoogle Scholar
  36. 36.
    Hasenfratz D, Saukh O, Thiele L (2012) On-the-fly calibration of low-cost gas sensors. In: European Conference on Wireless Sensor Networks. pp. 228–244Google Scholar
  37. 37.
    Gutierrez-Osuna R (2003) Signal processing methods for drift compensation. In: 2nd NOSE II Workshop Linköping. pp. 18–21Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryOakland UniversityRochesterUSA

Personalised recommendations