Skip to main content
Log in

Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The task of lipid analysis and profiling is taking centre stage in many research fields and as a consequence, there has been an intense effort to develop suitable methodologies to discover, identify, and quantify lipids in the systems investigated. Given the high complexity and diversity of the lipidome, researchers have been challenged to afford thorough knowledge of all the lipid species in a given sample, by gathering the data obtained by complementary analytical techniques. In this research, an “omic” approach was developed to quickly fingerprint lipids in the Mediterranean mussel (Mytilus galloprovincialis), by exploiting multidimensional and hyphenated techniques. In detail, two-dimensional comprehensive hydrophilic interaction liquid chromatography coupled to reversed-phase liquid chromatography afforded both class-type separation and lipid assignment within the total lipid species in the sample, by the coupling of a 2.1-mm I.D. partially porous stationary phase in the first dimension, to a short (50 mm) monodisperse octadecylsilica secondary column; individual molecular species were afterwards identified by means of their ion trap-time of flight mass spectra obtained by electrospray ionization. More than 200 neutral and polar lipids were identified, and among the latter, phosphatydylcholine and phosphatydylethanolamine were the most represented classes, together with their mono-acylated forms, plasmanyl and plasmenyl derivatives. Subsequently, separation of the saturated and unsaturated isomers of the fatty acids (including the saturated C16:0 and the polyunsaturated C22:6) in the offline collected phospholipid fractions was accomplished by gas chromatography analysis of the corresponding methyl esters, on a 200 m × 0.25 mm, 0.2 μm d f ionic liquid column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teslovich TM, Musunuru K, …, Kathiresan S. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

  2. Akoh CC. Food lipids: chemistry, nutrition, and biotechnology. 4th ed. Boca Raton: CRC Press; 2017.

    Book  Google Scholar 

  3. Hyötyläinen T, Orešič M. Optimizing the lipidomics workflow for clinical studies—practical considerations. Anal Bioanal Chem. 2015;407:4973–93.

    Article  CAS  PubMed  Google Scholar 

  4. Donato P, Cacciola F, Beccaria M, Dugo P, Mondello L. Lipidomics. In: Picò Y, editor. Advanced mass spectrometry for food safety and quality. Amsterdam: Elsevier; 2015. p. 395–439.

    Chapter  Google Scholar 

  5. Donato P, Inferrera I, Sciarrone D, Mondello L. Supercritical fluid chromatography for lipid analysis in foodstuffs. J Sep Sci. 2017;40:361–82.

    Article  CAS  PubMed  Google Scholar 

  6. Beccaria M, Sullini G, Cacciola F, Donato P, Dugo P, Mondello L. High performance characterization of triacylglycerols in milk and milk-related samples by liquid chromatography and mass spectrometry. J Chromatogr A. 2014;1360:172–87.

    Article  CAS  PubMed  Google Scholar 

  7. Lísa M, Holčapek M. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2008;1198:115–30.

    Article  CAS  PubMed  Google Scholar 

  8. Hutchins PM, Barkley RM, Murphy RC. Separation of cellular non polar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res. 2008;49:804–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donato P, Cacciola F, Cichello F, Russo M, Dugo P, Mondello L. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J Chromatogr A. 2011;1218:6476–82.

    Article  CAS  PubMed  Google Scholar 

  10. Tranchida PQ, Donato P, Dugo P, Dugo G, Mondello L. Comprehensive chromatographic methods for the analysis of lipids. TrAC Trends Anal Chem. 2007;26:191–205.

    Article  CAS  Google Scholar 

  11. Jandera P. Column selectivity for two-dimensional liquid chromatography. J Sep Sci. 2006;29:1763–83.

    Article  CAS  PubMed  Google Scholar 

  12. Jandera P. Comprehensive two-dimensional liquid chromatography—practical impacts of theoretical considerations. A review. Cent Eur J Chem. 2012;10:844–75.

    Google Scholar 

  13. Dugo P, Fawzy N, Cichello F, Cacciola F, Donato P, Mondello L. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J Chromatogr A. 2013;1278:46–53.

    Article  CAS  PubMed  Google Scholar 

  14. Lísa M, Cífková E, Holčapek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2011;1218:5146–56.

    Article  CAS  PubMed  Google Scholar 

  15. Li M, Tong X, Lv P, Feng B, Yang L, Wu Z, et al. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients. J Chromatogr A. 2014;1372:110–9.

    Article  CAS  Google Scholar 

  16. Donato P, Cacciola F, Tranchida PQ, Dugo P, Mondello L. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. Mass Spectrom Rev. 2012;31:523–59.

    Article  CAS  PubMed  Google Scholar 

  17. Holčapek M, Ovčačíková M, Lísa M, Cífková E, Hájek T. Continuous comprehensive two-dimensional liquid chromatography–electrospray ionization mass spectrometry of complex lipidomic samples. Anal Bioanal Chem. 2015;407:5033–43.

    Article  CAS  PubMed  Google Scholar 

  18. Baglai A, Gargano AFG, Jordens J, Mengerink Y, Honing M, van der Wal S, et al. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry. J Chromatogr A. 2017;1530:90–103.

    Article  CAS  PubMed  Google Scholar 

  19. Cajka T, Fiehn P. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal Chem. 2014;61:192–206.

    Article  CAS  Google Scholar 

  20. Zoccali M, Schug KA, Walsh P, Smuts J, Mondello L. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures. J Chromatogr A. 2017;1497:135–43.

    Article  PubMed  Google Scholar 

  21. Delmonte P, Fardin-Kia AR, Rader JI. Separation of fatty acid methyl esters by GC-online hydrogenation×GC. Anal Chem. 2013;85:1517–24.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson JL, Armstrong DW. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem. 2003;75:4851–8.

    Article  CAS  PubMed  Google Scholar 

  23. Amaral MSS, Marriott PJ, Bizzo HR, et al. Ionic liquid capillary columns for analysis of multi-component volatiles by gas chromatography-mass spectrometry: performance, selectivity, activity and retention indices. Anal Bioanal Chem. 2017; https://doi.org/10.1007/s00216-017-0718-7.

  24. Delmonte P, Fardin-Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Rader J. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr A. 2011;1218:545–54.

    Article  CAS  PubMed  Google Scholar 

  25. Zapadlo M, Krupcik J, Májek P, Armstrong DW, Sandra P. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs. J Chromatogr A. 2010;1217:5859–67.

    Article  CAS  PubMed  Google Scholar 

  26. Seeley JV, Seeley SK, Libby EK, Breitbach ZS, Armstrong DW. Comprehensive two-dimensional gas chromatography using a high-temperature phosphonium ionic liquid column. Anal Bioanal Chem. 2008;390:323–32.

    Article  CAS  PubMed  Google Scholar 

  27. Fanali C, Micalizzi G, Dugo P, Mondello L. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Analyst. 2017; https://doi.org/10.1039/c7an01338h.

  28. Albergamo A, Rigano F, Purcaro G, Mauceri A, Fasulo S, Mondello L. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects. Sci Total Environ. 2016;571:955–62.

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-Pita I, Sánchez-Lazo C, Ruíz-Jarabo R, Herrera M, Mancera JM. Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel Mytilus galloprovincialis from cultivated populations in south Spain. Aquaculture. 2012;358-359:274–83.

    Article  CAS  Google Scholar 

  30. Rigano F, Albergamo A, Sciarrone D, Beccaria M, Purcaro G, Mondello L. Nano liquid chromatography directly coupled to electron ionization mass spectrometry for free fatty acid elucidation in mussel. Anal Chem. 2016;88:4021–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bligh EG, Dyer WG. A rapid method of total lipid extraction and purification. Can J Biochem Phys. 1959;37:911–7.

    Article  CAS  Google Scholar 

  32. OECD. Test no. 305: bioaccumulation in fish: aqueous and dietary exposure. Paris: OECD Publishing; 2012. https://doi.org/10.1787/9789264185296-en.

    Book  Google Scholar 

  33. Zhu C, Dane A, Spijksma G, Wang M, van der Greef J, Luo G, et al. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column. J Chromatogr A. 2012;1220:26–34.

    Article  CAS  PubMed  Google Scholar 

  34. Jandera P. Programmed elution in comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2012;1255:112–29.

    Article  CAS  PubMed  Google Scholar 

  35. Facchini L, Losito I, Cataldi TR, Palmisano F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: a study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J Mass Spectrom. 2017; https://doi.org/10.1002/jms.4029.

  36. Facchini L, Losito I, Cataldi TR, Palmisano F. Ceramide lipids in alive and thermally stressed mussels: an investigation by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J Mass Spectrom. 2016;51:768–81.

    Article  CAS  PubMed  Google Scholar 

  37. Jandera P, Hájek T, Cesla P. Comparison of various second-dimension gradient types in comprehensive two-dimensional liquid chromatography. J Sep Sci. 2010;33:1382–97.

    Article  CAS  PubMed  Google Scholar 

  38. Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci. 2017:1–30. https://doi.org/10.1002/jssc.201700863.

  39. Donato P, Rigano F, Cacciola F, Schure M, Farnetti S, Russo M, et al. Comprehensive two-dimensional liquid chromatography–tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. J Chromatogr A. 2016;1458:54–62.

    Article  CAS  PubMed  Google Scholar 

  40. Murphy KJ, Mooney BD, Mann NJ, Nichols PD, Sinclair AJ. Lipid, FA, and sterol composition of New Zealand green lipped mussel (Pernacanaliculus) and Tasmanian blue mussel (Mytilusedulis). Lipids. 2002;37:587–95.

    Article  CAS  PubMed  Google Scholar 

  41. Gorinstein S, Moncheva S, Katrich E, Toledo F, Arancibia P, Goshev I, et al. Antioxidants in the black mussel (Mytilus galloprovincialis) as an indicator of black sea coastal pollution. Mar Pollut Bull. 2003;46:1317–25.

    Article  CAS  PubMed  Google Scholar 

  42. Delmonte P, Fardin-Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Tyburczy C, et al. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A. 2012;1233:137–46.

    Article  CAS  PubMed  Google Scholar 

  43. Christie WW. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW, editor. Advances in lipid methodology–two. Dundee: Oily Press; 1993. p. 69–111.

    Google Scholar 

  44. Marinetti GV. Hydrolysis of lecithin with sodium methoxide. Biochemistry. 1962;1:350–3.

    Article  CAS  PubMed  Google Scholar 

  45. Marinetti GV. Low temperature partial alcoholysis of triglycerides. J Lipid Res. 1966;7:786–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Shimadzu Corporation and Millipore Sigma/Supelco Corporation for the continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Mondello.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Statement of human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures were in accordance with guidelines for the protection of animal welfare, in compliance with the Italian National Bioethics Committee (INBC) (European Community Council Directive of November 24, 1986-86/609/EEC).

Additional information

Published in the topical collection Euroanalysis XIX with guest editors Charlotta Turner and Jonas Bergquist.

Electronic supplementary material

ESM 1

(PDF 850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donato, P., Micalizzi, G., Oteri, M. et al. Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal Bioanal Chem 410, 3297–3313 (2018). https://doi.org/10.1007/s00216-018-1045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1045-3

Keywords

Navigation