Skip to main content
Log in

Facile one-pot synthesis of multifunctional polyphosphazene nanoparticles as multifunctional platform for tumor imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

By integrating imaging and drug-delivery in a single system, fluorescent nano-multifunctional imaging platforms can offer simultaneous diagnosis and therapy to diseases like cancer. However, the synthesis of such system involves a tedious, time-consuming, and multi-step process. Herein we report a facile method based on simple ultrasonication to synthesize highly cross-linked, monodispersed fluorescent polyphosphazene nanoparticles from hexachlorocyclotriphosphazene (HCCP) and dichlorofluorescein (FD). Various functional groups (folic acid, PEG-NH2, and methylene blue) can be “fastened” in situ onto the poly(cyclotriphosphazene-co-dichlorofluorescein) (PCTPDF) nanoparticles to expand its application as nano-multifunctional platform. All the nanoparticles were characterized spectrophotometrically, and morphology was established by the images obtained from scanning electron microscope (SEM). The synthesized multifunctional nanoparticles exhibited low toxicity and penetrated through the cytomembranes of human colon cancer (HCT 116) cells. When applied to in vivo tumor imaging using biologically engineered mouse model, methylene blue functionalized (PCTPDF@MB) nanoparticles exhibited excellent photodynamic activity and imaging ability. Thus, PCTPDF nanoplatform based on multi-functional fluorescent nanoparticles might offer an efficient solution to new age theranostics. Apart from diagnostics application, PCTPDF, as a nanoplatform, could also be utilized to achieve more comprehensive application in modern analytic chemistry.

The table of contents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Ozawa T, Yoshimura H, Kim SB. Advances in fluorescence and bioluminescence imaging. Anal Chem. 2013;85(2):590–609.

    Article  CAS  PubMed  Google Scholar 

  2. Jamwal HS, Chauhan GS (2016) Designing silica-based hybrid polymers and their application in the loading and release of fluorescein as a model drug and diagnostic agent. Adv Polym Tech n/a-n/a. p. 1–8.

  3. Fuentes-Paniagua E, Serramía MJ, Sánchez-Nieves J, Álvarez S, Muñoz-Fernández MÁ, Gómez R, et al. Fluorescein labelled cationic carbosilane dendritic systems for biological studies. Eur Polym J. 2015;71:61–72.

    Article  CAS  Google Scholar 

  4. Tsai HY, Li SY, Fuh CB. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay. Anal Bioanal Chem. 2018;410(7):1–7.

    Article  CAS  Google Scholar 

  5. Hayashi K, Sato Y, Sakamoto W, Yogo T. Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relaxivity and heat-generation power. ACS Biomater-Sci Eng. 2016;3(1):95–105.

    Article  CAS  Google Scholar 

  6. Xiang LX, Gong H, Zhu WW, Wang C, Xu J, Feng LZ, et al. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano. 2015;9(6):6401–11.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev. 2012;41(3):1323–49.

    Article  CAS  PubMed  Google Scholar 

  8. Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114(4):2343–89.

    Article  CAS  PubMed  Google Scholar 

  9. Liu CJ, Zhang P, Zhai XY, Tian F, Li WC, Yang JH, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–13.

    Article  CAS  PubMed  Google Scholar 

  10. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc. 2012;134(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  11. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.

    Article  CAS  PubMed  Google Scholar 

  12. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.

    Article  PubMed  Google Scholar 

  13. Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev. 2014;43(12):4243–68.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X-D, Meier RJ, Wolfbeis OS. A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Adv Funct Mater. 2012;22(20):4202–7.

    Article  CAS  Google Scholar 

  15. Jurado-Sanchez B, Escarpa A, Wang J. Lighting up micromotors with quantum dots for smart chemical sensing. Chem Commun (Camb). 2015;51(74):14088–91.

    Article  CAS  Google Scholar 

  16. Jurado-Sanchez B, Pacheco M, Rojo J, Escarpa A. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem. 2017;56(24):6957–61.

    Article  CAS  Google Scholar 

  17. Wu Z, Esteban-Fernandez de Avila B, Martin A, Christianson C, Gao W, Thamphiwatana SK, et al. RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale. 2015;7(32):13680–6.

    Article  CAS  PubMed  Google Scholar 

  18. Liang Y, Lin S, Liu L, Hu J, Cui W. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation. Appl Catal B – Environ. 2015;164:192–203.

    Article  CAS  Google Scholar 

  19. Tissandier C, Diop N, Martini M, Roux S, Tillement O, Hamaide T. One-pot synthesis of hybrid multifunctional silica nanoparticles with tunable coating by click chemistry in reverse w/o microemulsion. Langmuir. 2012;28(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XY, Zhang XQ, Yang B, Hui JF, Liu MY, Liu WY, et al. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym Chem. 2014;5(3):689–93.

    Article  Google Scholar 

  21. Zeng H, Zhang D, Zhai X, Wang S, Liu Q. Enhancing the immunofluorescent sensitivity for detection of acidovoraxcitrulli using fluorescein isothiocyanate labeled antigen and antibody. Anal Bioanal Chem. 2018;410(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  22. Song ZG, Kwok RT, Zhao EG, He ZK, Hong YN, Lam JW, et al. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interface. 2014;6(19):17245–54.

    Article  CAS  Google Scholar 

  23. Wang YH, Jiang CN, Wen GQ, Zhang XH, Luo YH, Qin AM, et al. A sensitive fluorescence method for detection of E. coli using rhodamine 6G dyeing. Luminescence. 2016;31(4):972–7.

    Article  CAS  PubMed  Google Scholar 

  24. Liu MY, Ji JZ, Zhang XY, Zhang XQ, Yang B, Deng FJ, et al. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem. 2015;3(17):3476–82.

    Article  CAS  Google Scholar 

  25. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev. 2011;40(11):5388.

    Article  CAS  Google Scholar 

  26. Luo JD, Xie ZL, JWY L, Cheng L, Chen HY, Qiu CF, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18(18):1740–1.

    Article  Google Scholar 

  27. Possel H, Noack H, Augustin W, Keilhoff G, Wolf G. 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett. 1997;416(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sun LJ, Liu TH, Li H, Yang L, Meng LJ, Lu QH, et al. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. ACS Appl Mater Interface. 2015;7(8):4990–7.

    Article  CAS  Google Scholar 

  29. Zhu L, Zhu Y, Pan Y, Huang Y, Huang X, Tang X. Fully cross-linked poly[cyclotriphosphazene-co-(4,4′-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties. Macromol React Eng. 2007;1(1):45–52.

    Article  CAS  Google Scholar 

  30. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials. 2005;26(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  31. Orme CJ, Stewart FF. Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes. J Membrane Sci. 2005;253(1/2):243–9.

    Article  CAS  Google Scholar 

  32. Wen P, Tai Q, Hu Y, Yuen RKK. Cyclotriphosphazene-based intumescent flame retardant against the combustible polypropylene. Ind Eng Chem Res. 2016;55(29):8018–24.

    Article  CAS  Google Scholar 

  33. Li X, Chen L. Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum. ACS Appl Mater Interface. 2016;8(46):31832–40.

    Article  CAS  Google Scholar 

  34. Luangtana-anan M, Nunthanid J, Limmatvapirat S. Effect of molecular weight and concentration of polyethylene glycol on physicochemical properties and stability of shellac film. J Agri Food Chem. 2010;58(24):12934–40.

    Article  CAS  Google Scholar 

  35. Matsumura S, Sato S, Yudasaka M, Tomida A, Tsuruo T, Iijima S, et al. Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol Pharm. 2009;6(2):441–7.

    Article  CAS  PubMed  Google Scholar 

  36. Yu J, Hsu CH, Huang CC, Chang PY. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl Mater Interface. 2015;7(1):432–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61335012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hu.

Ethics declarations

All animal experiments were approved by the Institutional Animal Care and Use Committee of Xi'an Jiaotong University and were performed according to the institution's guidelines for the use of laboratory animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, M., Hu, S. et al. Facile one-pot synthesis of multifunctional polyphosphazene nanoparticles as multifunctional platform for tumor imaging. Anal Bioanal Chem 410, 3723–3730 (2018). https://doi.org/10.1007/s00216-018-1035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1035-5

Keywords

Navigation