Skip to main content
Log in

Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems.

The aluminum acoustofluidic device and the generation of multinode focusing of particles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip. 2009;9(23):3354–9.

    Article  CAS  PubMed  Google Scholar 

  2. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip. 2005;5(1):20–2.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkes JJ, Barber RW, Emerson DR, Coakley WT. Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab Chip. 2004;4(5):446–52.

    Article  CAS  PubMed  Google Scholar 

  4. Johansson L, Nikolajeff F, Johansson S, Thorslund S. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem. 2009;81(13):5188–96.

    Article  CAS  PubMed  Google Scholar 

  5. Yasuda K, Haupt SS, Umemura S, Yagi T, Nishida M, Shibata Y. Using acoustic radiation force as a concentration method for erythrocytes. J Acoust Soc Am. 1997;102(1):642–5.

    Article  CAS  PubMed  Google Scholar 

  6. Haake A, Neild A, Kim DH, Ihm JE, Sun Y, Dual J, et al. Manipulation of cells using an ultrasonic pressure field. Ultrasound Med Biol. 2005;31(6):857–64.

    Article  PubMed  Google Scholar 

  7. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst. 2004;129(10):938–43.

    Article  CAS  PubMed  Google Scholar 

  8. Goddard G, Martin JC, Graves SW, Kaduchak G. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry A. 2006;69(2):66–74.

    Article  PubMed  Google Scholar 

  9. Ai Y, Sanders CK, Marrone BL. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem. 2013;85(19):9126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenshof A, Jamal A, Dykes J, Urbansky A, Åstrand-Grundström I, Laurell T, et al. Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis. Cytometry A. 2014;85(11):933–41.

    Article  CAS  PubMed  Google Scholar 

  11. Evander M, Lenshof A, Laurell T, Nilsson J. Acoustophoresis in wet-etched glass chips. Anal Chem. 2008;80(13):5178–85.

    Article  CAS  PubMed  Google Scholar 

  12. Austin Suthanthiraraj PP, Piyasena ME, Woods TA, Naivar MA, Lopez GP, Graves SW. One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods. 2012;57(3):259–71.

    Article  CAS  PubMed  Google Scholar 

  13. Shi J, Mao X, Ahmed D, Colletti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip. 2008;8(2):221–3.

    Article  CAS  PubMed  Google Scholar 

  14. Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev. 2007;36(3):492–506.

    Article  CAS  PubMed  Google Scholar 

  15. Yeo LY, Friend JR. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics. 2009;3(1):012002–23.

    Article  CAS  PubMed Central  Google Scholar 

  16. Friend J, Yeo LY. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev Mod Phys. 2011;83(2):647–704.

    Article  Google Scholar 

  17. Gedge M, Hill M. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Lab Chip. 2012;12(17):2998–3007.

    Article  CAS  PubMed  Google Scholar 

  18. Lenshof A, Evander M, Laurell T, Nilsson J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip. 2012;12(4):684–95.

    Article  CAS  PubMed  Google Scholar 

  19. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip. 2010;10(6):789–94.

    Article  CAS  PubMed  Google Scholar 

  20. Bora M, Shusteff M. Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip. 2015;15(15):3192–202.

    Article  CAS  PubMed  Google Scholar 

  21. Piyasena ME, Austin Suthanthiraraj PP, Applegate RW, Goumas AM, Woods TA, Lopez GP, et al. Multinode acoustic focusing for parallel flow cytometry. Anal Chem. 2012;84(4):1831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller A, Lever A, Nguyen T, Comolli J, Fiering J. Continuous acoustic separation in a thermoplastic microchannel. J Micromech Microeng. 2013;23(12):125006.

    Article  CAS  Google Scholar 

  23. Dow P, Kotz K, Gruszka S, Holder J, Fiering J. Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. Lab Chip. 2018; https://doi.org/10.1039/C7LC01180F.

  24. Lin Y-S, Huang K-S, Hsieh W-C. An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(DL-lactide-co-glycolide) microparticle generation. Sensors. 2012;12:1455–67.

    Article  CAS  PubMed  Google Scholar 

  25. Eghtesad A, Knezevic M. A new approach to fluid–structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution. Comput Part Mech. 2017; https://doi.org/10.1007/s40571-017-0176-1.

  26. Jahanmir S. Surface integrity in ultrahigh speed micromachining. Procedia Eng. 2011;19:156–61.

    Article  Google Scholar 

  27. Wiklund M, Gunther C, Lemor R, Jager M, Fuhr G, Hertz HM. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip. 2006;6(12):1537–44.

    Article  CAS  PubMed  Google Scholar 

  28. Nilsson A, Petersson F, Jonsson H, Laurell T. Acoustic control of suspended particles in micro fluidic chips. Lab Chip. 2004;4(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  29. Manneberg O, Melker Hagsäter S, Svennebring J, Hertz HM, Kutter JP, Bruus H, et al. Spatial confinement of ultrasonic force fields in microfluidic channels. Ultrasonics. 2009;49(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hagsater SM, Jensen TG, Bruus H, Kutter JP. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations. Lab Chip. 2007;7(10):1336–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MEP acknowledges funding for an Institutional Development Award from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under grant number P20GM103451, and SWG acknowledges funding from NIH (R21GM107805) and the National Science Foundation (1130140). SWG and MJC acknowledge funding from NIH (R44GM117649). The authors thank Snezna Rogelj and Danielle Turner in the Department of Biology at New Mexico Institute of Mining and Technology for providing Jurkat cell samples. The authors also thank Esequiel Lopez of Sandia Electro-Optics Corporation for his work and assistance with the machining of the devices and Paul Fuierer and Robert Calvo in the Materials Engineering Department at New Mexico Institute of Mining and Technology for their help with profilometer measurements. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy Office of Science by Los Alamos National Laboratory (contract DE-AC52-06NA25396) and Sandia National Laboratories (contract DE-NA-0003525). The authors thank Douglas V. Pete at the Center for Integrated Nanotechnologies, Albuquerque, for assistance in obtaining scanning electron microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menake E. Piyasena.

Ethics declarations

Conflict of interest

GPG, TB, AW, and MEP declare that they have no competing interests. SWG and MJC declare a commercial interest in this technology as it is relevant to their commercial company, Eta Diagnostics, which is commercializing parallel acoustic flow cytometers.

Electronic supplementary material

ESM 1

(PDF 368 kb)

ESM 2

(AVI 3394 kb)

ESM 3

(AVI 4181 kb)

ESM 4

(AVI 3020 kb)

ESM 5

(AVI 2865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, G.P., Burger, T., Wilcox, A. et al. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Anal Bioanal Chem 410, 3385–3394 (2018). https://doi.org/10.1007/s00216-018-1034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1034-6

Keywords

Navigation