The requirements for low-temperature plasma ionization support miniaturization of the ion source

Research Paper

Abstract

Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique.

Graphical abstract

Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black

Keywords

Low-temperature plasma ionization Ambient mass spectrometry Source geometry Optimal signal intensity 

Notes

Acknowledgements

The authors thank Dr.-Ing. Susan Billig, Ramona Oehme, Josef J. Heiland (all from the University of Leipzig, Germany), and Aigerim Galyamova (Penn State University, USA) for their technical assistance. We also thank Prof. Frank-Dieter Kopinke (Helmholtz Centre for Environmental Research, Leipzig, Germany) for his valuable critical hints regarding manuscript writing. In addition, we thank Prof. em. Berger (University of Leipzig, Germany) for kind and constant support. This work was financed by the Deutsche Bundesstiftung Umwelt (DBU grant no. 20015/375), the European Regional Development Fund (ERDF, Europäischer Fond für Regionale Entwicklung EFRE, “Europe funds Saxony,” grant no. 100195374), the German Academic Exchange Service (DAAD “Rise” program 2016), and the University of Leipzig.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest relating to this work.

Supplementary material

216_2018_1033_MOESM1_ESM.pdf (583 kb)
ESM 1 (PDF 583 kb)

References

  1. 1.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.CrossRefGoogle Scholar
  2. 2.
    Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.CrossRefGoogle Scholar
  3. 3.
    Chen H, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun (Cambridge, UK). 2006:2042–4.Google Scholar
  4. 4.
    Haddad R, Sparrapan R, Kotiaho T, Eberlin MN. Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. Anal Chem. 2008;80:898–903.CrossRefGoogle Scholar
  5. 5.
    Ratcliffe LV, Rutten FJM, Barrett DA, Whitmore T, Seymour D, Greenwood C, et al. Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Anal Chem. 2007;79:6094–101.CrossRefGoogle Scholar
  6. 6.
    Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. Low-temperature plasma probe for ambient desorption ionization. Anal Chem. 2008;80:9097–104.CrossRefGoogle Scholar
  7. 7.
    Shiea J, Huang M-Z, Hsu H-J, Lee C-Y, Yuan C-H, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom. 2005;19:3701–4.CrossRefGoogle Scholar
  8. 8.
    Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17:1712–6.CrossRefGoogle Scholar
  9. 9.
    Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79:8098–106.CrossRefGoogle Scholar
  10. 10.
    Olenici-Craciunescu SB, Michels A, Meyer C, Heming R, Tombrink S, Vautz W, et al. Characterization of a capillary dielectric barrier plasma jet for use as a soft ionization source by optical emission and ion mobility spectrometry. Spectrochim Acta Part B. 2009;64:1253–8.Google Scholar
  11. 11.
    Chan GC-Y, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, et al. Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem. 2011;83:3675–86.CrossRefGoogle Scholar
  12. 12.
    Andrade FJ, Wetzel WC, Chan GC-Y, Webb MR, Gamez G, Ray SJ, et al. A new, versatile, direct-current helium atmospheric-pressure glow discharge. J Anal At Spectrom. 2006;21:1175.CrossRefGoogle Scholar
  13. 13.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, et al. Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Anal Chem. 2008;80:2654–63.CrossRefGoogle Scholar
  14. 14.
    Na N, Zhao M, Zhang S, Yang C, Zhang X. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1859–62.CrossRefGoogle Scholar
  15. 15.
    Golubović J, Birkemeyer C, Protić A, Otašević B, Zečević M. Structure–response relationship in electrospray ionization-mass spectrometry of sartans by artificial neural networks. J Chromatogr A. 2016;1438:123–32.Google Scholar
  16. 16.
    Abburi R, Kalkhof S, Oehme R, Kiontke A, Birkemeyer C. Artifacts in amine analysis from anodic oxidation of organic solvents upon electrospray ionization for mass spectrometry. Eur J Mass Spectrom. 2012;18:301–12.CrossRefGoogle Scholar
  17. 17.
    Na N, Zhang C, Zhao M, Zhang S, Yang C, Fang X, et al. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J Mass Spectrom. 2007;42:1079–85.CrossRefGoogle Scholar
  18. 18.
    Huang G, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG. Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst. 2010;135:705–11.CrossRefGoogle Scholar
  19. 19.
    Liu Y, Ma X, Lin Z, He M, Han G, Yang C, et al. Imaging mass spectrometry with a low-temperature plasma probe for the analysis of works of art. Angew Chem Int Ed Engl. 2010;49:4435–7.CrossRefGoogle Scholar
  20. 20.
    Wiley JS, Shelley JT, Cooks RG. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry. Anal Chem. 2013;85:6545–52.CrossRefGoogle Scholar
  21. 21.
    Hayen H, Michels A, Franzke J. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry. Anal Chem. 2009;81:10239–45.CrossRefGoogle Scholar
  22. 22.
    Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process. 2003;23:1–46.CrossRefGoogle Scholar
  23. 23.
    Hagenhoff S, Franzke J, Hayen H. Determination of peroxide explosive TATP and related compounds by dielectric barrier discharge ionization-mass spectrometry (DBDI-MS). Anal Chem. 2017;89:4210–5.CrossRefGoogle Scholar
  24. 24.
    Kiontke A, Oliveira-Birkmeier A, Opitz A, Birkemeyer C. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLoS One. 2016;1:e0167502.CrossRefGoogle Scholar
  25. 25.
    Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. Anal Chem. 2010;82:2463–71.CrossRefGoogle Scholar
  26. 26.
    Hu B, So P-K, Chen H, Yao Z-P. Electrospray ionization using wooden tips. Anal Chem. 2011;83:8201–7.CrossRefGoogle Scholar
  27. 27.
    Kerian KS, Jarmusch AK, Cooks RG. Touch spray mass spectrometry for in situ analysis touch spray mass spectrometry for in situ analysis of complex samples. Analyst. 2014;139:2714–20.CrossRefGoogle Scholar
  28. 28.
    Meher AK, Chen Y-C. Tissue paper assisted spray ionization mass spectrometry. RSC Adv. 2015;5:94315–20.Google Scholar
  29. 29.
    Quinn KD, Cruickshank CI, Wood TD. Ultra high-mass resolution paper spray by Fourier transform ion cyclotron resonance mass spectrometry. Int J Anal Chem. 2012;2012:382021.Google Scholar
  30. 30.
    Karakas E, Koklu M, Laroussi M. Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets. J Phys D Appl Phys. 2010;43:155202.CrossRefGoogle Scholar
  31. 31.
    Urabe K, Ito Y, Sakai O, Tachibana K. Interaction between dielectric barrier discharge and positive streamer in helium plasma jet at atmospheric pressure. Jpn J Appl Phys. 2010;49:106001.CrossRefGoogle Scholar
  32. 32.
    Joh HM, Kim SJ, Chung TH, Leem SH. Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma–cancer cell interactions. AIP Adv. 2013;3:92128.Google Scholar
  33. 33.
    Walsh JL, Kong MG. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl Phys Lett. 2008;93:111501.CrossRefGoogle Scholar
  34. 34.
    Pedersen PO. Über den elektrischen Funken. I. Teil: Funkenverzögerung. Ann Phys. 1923;376:317–76.Google Scholar
  35. 35.
    Grove TT, Masters MF, Miers RE. Determining dielectric constants using a parallel plate capacitor. Am J Phys. 2005;73:52–6.CrossRefGoogle Scholar
  36. 36.
    Humud HR, Obayes TK, Abbas QA. Electrodes configuration effect on some properties of low temperature plasma jet (LTPJ). IJCET. 2004;4:2580–4.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Analytical ChemistryUniversity of LeipzigLeipzigGermany
  2. 2.Department of Environmental EngineeringHelmholtz-Centre for Environmental ResearchLeipzigGermany

Personalised recommendations