Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 13, pp 3209–3216 | Cite as

Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching

  • Yanan Zhang
  • Xinping Ning
  • Guobin Mao
  • Xinghu Ji
  • Zhike He
Research Paper

Abstract

We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for “turn-on” detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5–20 nM, and the recoveries in spiked human fluids are in the range of 90–122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease.

Graphical abstract

The SiND-based fluorescent sensor for detection of S-miR-27a

Keywords

Silicon nanodots DNA probe Fluorescent sensor The synthetic target miRNA-27a 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (21475101, 21675119).

Compliance with ethical standards

The study was approved by the Ethical Committee of Wuhan University. Human fluid samples used in this study do not have any identifying information about all the participants that provided written informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1030_MOESM1_ESM.pdf (757 kb)
ESM 1 (PDF 756 kb)

References

  1. 1.
    Bartel DP. MicroRNAs. Cell. 2004;116(2):281–97.CrossRefGoogle Scholar
  2. 2.
    Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature 2005;435(7044):974–8.Google Scholar
  3. 3.
    Ng EKO, Li R, Shin VY, Jin HC, Leung CPH, Ma ESK, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8(1):e53141.CrossRefGoogle Scholar
  4. 4.
    Cissell KA, Shrestha S, Deo SK. MicroRNA detection: challenges for the analytical chemist. Anal Chem. 2007;79(13):4754–61.CrossRefGoogle Scholar
  5. 5.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.CrossRefGoogle Scholar
  6. 6.
    Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem. 2008;80(7):2319–25.CrossRefGoogle Scholar
  7. 7.
    Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68(15):6416–24.CrossRefGoogle Scholar
  8. 8.
    Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.CrossRefGoogle Scholar
  9. 9.
    Dong HF, Zhang J, Ju HX, Lu HT, Wang SY, Jin S, et al. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem. 2012;84(10):4587–93.CrossRefGoogle Scholar
  10. 10.
    Li J, Yao B, Huang H, Wang Z, Sun CH, Fan Y, et al. Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem. 2009;81(13):5446–51.CrossRefGoogle Scholar
  11. 11.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1(2):155–61.CrossRefGoogle Scholar
  12. 12.
    Ge J, Zhang LL, Liu SJ, Yu RQ, Chu X. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells. Anal Chem. 2014;86(3):1808–15.CrossRefGoogle Scholar
  13. 13.
    Chen CH, Li NX, Lan JW, Ji XH, He ZK. A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids. Anal Chim Acta. 2016;902:154–9.CrossRefGoogle Scholar
  14. 14.
    Jin ZW, Geißler D, Qiu X, Wegner KD, Hildebrandt N. A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed. 2015;54(34):10024–9.CrossRefGoogle Scholar
  15. 15.
    Qi Y, Qiu LY, Fan WJ, Liu CH, Li ZP. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification. Analyst. 2017;142(16):2967–73.CrossRefGoogle Scholar
  16. 16.
    Ren YQ, Deng HM, Shen W, Gao ZQ. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem. 2013;85(9):4784–9.CrossRefGoogle Scholar
  17. 17.
    Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, et al. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron. 2008;24(4):917–22.CrossRefGoogle Scholar
  18. 18.
    Wang Q, Liu RJ, Yang XH, Wang KM, Zhu JQ, He LL, et al. Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sensors Actuators B Chem. 2016;223:613–20.CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Chen ZW, Tao Y, Wang ZZ, Ren JS, Qu XG. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. Chem Commun. 2015;51(57):11496–9.CrossRefGoogle Scholar
  20. 20.
    Liu RJ, Wang Q, Li Q, Yang XH, Wang KM, Nie WY. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron. 2017;87:433–8.CrossRefGoogle Scholar
  21. 21.
    Zhen SJ, Xiao X, Li CH, Huang CZ. An enzyme-free DNA circuit-assisted graphene oxide enhanced fluorescence anisotropy assay for microRNA detection with improved sensitivity and selectivity. Anal Chem. 2017;89(17):8766–71.CrossRefGoogle Scholar
  22. 22.
    Noh EH, Ko HY, Lee CH, Jeong MS, Chang YW, Kim S. Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J Mater Chem B. 2013;1(35):4438–45.CrossRefGoogle Scholar
  23. 23.
    Liao XJ, Wang QB, Ju HX. Simultaneous sensing of intracellular microRNAs with a multi-functionalized carbon nitride nanosheet probe. Chem Commun. 2014;50(88):13604–7.CrossRefGoogle Scholar
  24. 24.
    Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron. 2013;49:164–9.CrossRefGoogle Scholar
  25. 25.
    Wang H, He Y. Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors. 2017;17:268.CrossRefGoogle Scholar
  26. 26.
    Ding LH, Liu HY, Zhang LN, Li L, Yu JH. Label-free detection of microRNA based on the fluorescence quenching of silicon nanoparticles induced by catalyzed hairpin assembly coupled with hybridization chain reaction. Sensors Actuators B Chem. 2018;254:370–6.CrossRefGoogle Scholar
  27. 27.
    Feng YL, Liu YF, Su C, Ji XH, He ZK. New fluorescent pH sensor based on label-free silicon nanodots. Sensors Actuators B Chem. 2014;203:795–801.CrossRefGoogle Scholar
  28. 28.
    Zhang YN, Guo S, Cheng SB, Ji XH, He ZK. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron. 2017;94:478–84.CrossRefGoogle Scholar
  29. 29.
    Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection—a review. Biosens Bioelectron. 2017;99:612–24.CrossRefGoogle Scholar
  30. 30.
    Gilman M. Preparation of cytoplasmic RNA from tissue culture cells. Curr Protoc Mol Biol: John Wiley & Sons, Inc. 2001.Google Scholar
  31. 31.
    Lee JH, Kim JA, Jeong S, Rhee WJ. Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons. Biosens Bioelectron. 2016;86:202–10.CrossRefGoogle Scholar
  32. 32.
    Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Jutooru I, Chadalapaka G, et al. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer. 2009;125(8):1965–74.CrossRefGoogle Scholar
  33. 33.
    Ma Y, Yu S, Zhao W, Lu Z, Chen J. MiR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 2010;298(2):150–8.CrossRefGoogle Scholar
  34. 34.
    Tang W, Yu F, Yao H, Cui X, Jiao Y, Lin L, et al. MiR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene. 2014;33(20):2629–38.CrossRefGoogle Scholar
  35. 35.
    Miao YM, Lv JZ, Yan GQ. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer. Biosens Bioelectron 2017;94:263–70.Google Scholar
  36. 36.
    Xie J, Jiang XX, Zhong YL, Lu YM, Wang SY, Wei XP, et al. Stem-loop DNA-assisted silicon nanowires-based biochemical sensors with ultra-high sensitivity, specificity, and multiplexing capability. Nano. 2014;6(15):9215–22.Google Scholar
  37. 37.
    Ko MC, Meyer GJ. Dynamic quenching of porous silicon excited states. Chem Mater. 1996;8(11):2686–92.CrossRefGoogle Scholar
  38. 38.
    Zhao D, Chan WH, He ZK, Qiu T. Quantum dot−ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection. Anal Chem. 2009;81(9):3537–43.CrossRefGoogle Scholar
  39. 39.
    Li HJ, Liu FY, Sun SG, Wang JY, Li ZY, Mu DZ, et al. Interaction of Ru(phen)(3)Cl-2 with graphene oxide and its application for DNA detection both in vitro and in vivo. J Mater Chem B. 2013;1(33):4146–51.CrossRefGoogle Scholar
  40. 40.
    Zhang CL, Xu J, Zhang SM, Ji XH, He ZK. One-pot synthesized DNA-CdTe quantum dots applied in a biosensor for the detection of sequence-specific oligonucleotides. Chem-Eur J. 2012;18(27):8296–300.CrossRefGoogle Scholar
  41. 41.
    Ma JL, Yin BC, Le HN, Ye BC. Label-free detection of sequence-specific DNA based on fluorescent silver nanoclusters-assisted surface plasmon-enhanced energy transfer. ACS Appl Mater Inter. 2015;7(23):12856–63.CrossRefGoogle Scholar
  42. 42.
    Kim H, Kang S, Park KS, Park HG. Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sensors Actuators B Chem. 2018;260:140–5.CrossRefGoogle Scholar
  43. 43.
    Miao XM, Cheng ZY, Ma HY, Li ZB, Xue N, Wang P. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem. 2018;90(2):1098–103.CrossRefGoogle Scholar
  44. 44.
    Li SY, Liu C, Gong H, Chen CY, Chen XM, Cai CQ. Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta. 2018;178:974–9.CrossRefGoogle Scholar
  45. 45.
    Zhang K, Wang K, Zhu X, Xu F, Xie MH. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Biosens Bioelectron. 2017;87:358–64.CrossRefGoogle Scholar
  46. 46.
    Wang R, Wang L, Zhao H, Jiang W. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA. Biosens Bioelectron 2016;86:834–9.Google Scholar
  47. 47.
    Islam MN, Masud MK, Nguyen NT, Gopalan V, Alamri HR, Alothman ZA, et al. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosens Bioelectron. 2018;101:275–81.CrossRefGoogle Scholar
  48. 48.
    Wabuyele MB, Yan F, Vo-Dinh T. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene. Anal Bioanal Chem. 2010;398(2):729–36.CrossRefGoogle Scholar
  49. 49.
    Zhu D, Miao ZY, Hu Y, Zhang XJ. Single-step, homogeneous and sensitive detection for microRNAs with dual-recognition steps based on luminescence resonance energy transfer (LRET) using upconversion nanoparticles. Biosens Bioelectron. 2018;100:475–81.CrossRefGoogle Scholar
  50. 50.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1):55–63.CrossRefGoogle Scholar
  51. 51.
    González AG, Herrador MA, AnG A. Intra-laboratory testing of method accuracy from recovery assays. Talanta. 1999;48(3):729–36.CrossRefGoogle Scholar
  52. 52.
    Green JM. Peer reviewed: a practical guide to analytical method validation. Anal Chem. 1996;68(9):305A–9A.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanan Zhang
    • 1
  • Xinping Ning
    • 1
  • Guobin Mao
    • 1
  • Xinghu Ji
    • 1
  • Zhike He
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations