Skip to main content

Advertisement

Log in

Fabrication of an immunosensor for early and ultrasensitive determination of human tissue plasminogen activator (tPA) in myocardial infraction and breast cancer patients

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sensitive detection of biomarkers will mean accurate and early diagnosis of diseases. A tissue plasminogen activator (tPA) has a crucial role in many cardiovascular diseases and it is related to many processes such as angiogenesis in cancer cells. Therefore, sensitive determination of tPA is important in diagnosis and clinical research. tPA monoclonal antibody was covalently attached onto single-wall carbon nanotubes (SWCNTs) using diimide-activated imidation coupling. Functionalized SWCNTs were immobilized onto a glassy carbon electrode and the modification process was investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), SEM, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Cyclic voltammograms (CVs) in a scan rate of 100 mVs−1 was studied and comparisons were made between the modified glassy carbon electrodes (immobilized with antibodies) as a working electrode before and after the formation of tPA-antibody complex. Results of the SDS-PAGE demonstrated that the antibody was covalently and site directly attached to the SWCNTs. The fabricated biosensor provided a good linear response range from 0.1 to 1.0 ng mL−1 with a low detection limit of 0.026 ng mL−1. The immunosensor showed selectivity, reproducibility, good sensitivity, and acceptable stability. Satisfactory results were observed for early and sensitive determination of tPA in human serum samples. For the first time, such specific biosensor is currently being fabricated for tPA in our laboratories and successfully could determine tPA in myocardial infraction and breast cancer patients.

Fabricated biosensor for determination of tPA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CV:

Cyclic voltammetry

Da:

Dalton

EDC:

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide

DDW:

Double-distilled water

GCE:

Glassy carbon electrode

NHS:

N-Hydroxy succinimide

EIS:

Impedance spectroscopy

Ab:

Monoclonal antibody

PBS:

Phosphate buffer solution

MWCO:

Por molecular weight cutoff

SEM:

Scanning electron microscope

SWCNTs:

Single-wall carbon nanotubes

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

tPA:

Tissue plasminogen activator

References

  1. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.

    Article  CAS  PubMed  Google Scholar 

  2. Saify NH, Yaghoobi MM, Jalali JM, Hosseinkhani S. Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Prep Biochem Biotechnol. 2011;41(2):175–86.

    Article  CAS  Google Scholar 

  3. Teesalu T, Kulla A, Asser T, Koskiniemi M, Vaheri A. Tissue plasminogen activator as a key effector in neurobiology and neuropathology. Biochem Soc Trans. 2002;30(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bansi DM, Saurabh K, Chandra MP. Nanomaterials based biosensors for cancer biomarker detection. J Phys Conf Ser. 2016;704:012011.

    Article  CAS  Google Scholar 

  5. González M, Jacinto G, José AA, Luis M, González F. Genomics and proteomics approaches for biomarker discovery in sporadic colorectal cancer with metastasis. Cancer Genomics Proteomics. 2013;10:19–26.

    Google Scholar 

  6. Guest PC, Gottschalk M, Bahn S. Proteomics: improving biomarker translation to modern medicine? NPJ Genom Med. 2013;5:17.

    Article  CAS  Google Scholar 

  7. Yamamoto K, Shi G, Zhou TS, Xu F, Xu JM, Kato T, et al. Study of carbon nanotubes–HRP modified electrode and its application for novel on-line biosensors. Analyst. 2003;128:249–54.

    Article  CAS  PubMed  Google Scholar 

  8. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.

    Article  CAS  PubMed  Google Scholar 

  9. Hawkridge AM, Muddiman DC. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Ann Rev Anal Chem. 2009;2:265–77.

    Article  CAS  Google Scholar 

  10. Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83(17):6698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bagheri F, Piri K, Mohsenifar A, Ghaderi S. FRET-based nanobiosensor for detection of scopolamine in hairy root extraction of Atropa belladonna. Talanta. 2017;164:593–600.

    Article  CAS  PubMed  Google Scholar 

  13. Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28:1–19.

    Article  Google Scholar 

  14. Chengwei W, Candace KC. Carbon nanotube-based electrodes for detection of low-ppb level hexavalent chromium using amperometry. ECS J Solid State Sci Technol. 2016;5(8):3026–31.

    Article  CAS  Google Scholar 

  15. Jacobs CB, Peairs MJ, Venton BJ. Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta. 2010;662:105–27.

    Article  CAS  PubMed  Google Scholar 

  16. Byoung CK, Inseon L, Seok-Joon K, Youngho W, Ki YK, Chulmin J, et al. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci Rep. 2017;7:40202. https://doi.org/10.1038/srep40202OCUS.

    Article  Google Scholar 

  17. Mendoza E, Orozco J, Enez-Jorquera C, Guerrero G, Calle A, Lechuga LM, et al. Scalable fabrication of immunosensors based on carbon nanotube polymer composites. Nanotechnology. 2008;19(7):075102. (6pp)

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Xiyan L, Xiulan ZF, Xiao W, Yan L. Metallic catalysts for structure-controlled growth of single-walled carbon nanotubes. Top Curr Chem (Z). 2017;375:29.

    Article  CAS  Google Scholar 

  19. Shim M, Wong Shi KN, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002;2(4):285–8.

    Article  CAS  Google Scholar 

  20. Tavakkoli M, Nico H, Rasmus K, Hua J, Jani S, Esko I, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo atomic-scale platinum for hydrogen evolution reaction. ACS Catal. 2017; Just Accepted Manuscript • Publication Date (Web): 17 Mar; https://doi.org/10.1021/acscatal.7b00199.

  21. Yang HC, Yuan R, Chai YQ, Su HL, Zhuo Y, Jiang W, et al. Electrochim Acta. 2011;56:1973–80.

    Article  CAS  Google Scholar 

  22. Zhao J, Zhang Y, Li H, Wen Y, Fan X, Lin F, et al. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens Bioelectron. 2011;26:2297–303.

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Wei Q, He J, Li T, Zhao Y, Cai Y, et al. Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles. Biosens Bioelectron. 2011;26(8):3590–5.

    Article  CAS  PubMed  Google Scholar 

  24. Blondeau P, Rius-Ruiz F, Düzgün A, Riu J, Rius FX. Covalent functionalization of single-walled carbon nanotubes with adenosine monophosphate: towards the synthesis of SWCNT–aptamer hybrids. Mater Sci Eng C. 2011;31:1363–8.

    Article  CAS  Google Scholar 

  25. Guo C, Venturelli E, Bianco A, Kostarelos K. Cellular internalisation of humanized IgG antibody changes by functionalization onto multi-walled carbon nanotubes. Drug Discov Today. 2010;15:1100–1.

    Google Scholar 

  26. Liu S, Shen Q, Cao Y, Gan L, Wang Z, et al. Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coord Chem Rev. 2010;254:1101–16.

    Article  CAS  Google Scholar 

  27. Stobiecka M, Chalupa A, Dworakowska B. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies. Biosens Bioelectron. 2016;84:37–43.

    Article  CAS  PubMed  Google Scholar 

  28. Asava E, Sezgintürk MK. A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker. Int J Biol Macromol. 2014;66:273–80.

    Article  CAS  Google Scholar 

  29. Saify Nabiabad H, Piri K, Amini M. Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr Purif. 2016; https://doi.org/10.1016/j.pep.2016.02.004.

  30. Hamidi M, Zarei N, Shahbazi MA. A simple and sensitive HPLC-UV method for quantitation of lovastatin in human plasma: application to a bioequivalence study. Biol Pharm Bull. 2009;32(9):1600–3.

    Article  CAS  PubMed  Google Scholar 

  31. Madrakian T, Haghshenas E, Afkhami A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differe. Sensors Actuators B Chem. 2014;193:451–60.

    Article  CAS  Google Scholar 

  32. Kafrashi F, Afkhami A, Saify Nabiabad H, Madrakian T, Piri K. Designing of a new label-free electrochemical impedimetric nanosensor based on selective interaction sequence of L-lysine with activase kringle domains for sensitive detection of activase protein. J Mol Liq. 2017;248:60–5.

    Article  CAS  Google Scholar 

  33. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano. 2012;6(8):6546–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received financial support from the University of Bu-Ali Sina (grant no. 18.04.1394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Piri.

Ethics declarations

Ethical approval for the study was granted by the Research Ethical Committee of the Bu-Ali Sina University (ethical code: IR.BASU.BIO.1392.26), and all patients gave written, informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saify Nabiabad, H., Piri, K., Kafrashi, F. et al. Fabrication of an immunosensor for early and ultrasensitive determination of human tissue plasminogen activator (tPA) in myocardial infraction and breast cancer patients. Anal Bioanal Chem 410, 3683–3691 (2018). https://doi.org/10.1007/s00216-018-1005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1005-y

Keywords

Navigation