Analytical and Bioanalytical Chemistry

, Volume 410, Issue 12, pp 2971–2979 | Cite as

Variations of l- and d-amino acid levels in the brain of wild-type and mutant mice lacking d-amino acid oxidase activity

  • Siqi Du
  • Yadi Wang
  • Choyce A. Weatherly
  • Kylie Holden
  • Daniel W. Armstrong
Research Paper

Abstract

d-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some d-amino acids are metabolized by d-amino acid oxidase (DAO), while d-Asp and d-Glu are metabolized by d-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO+/+), mutant mice lacking DAO activity (ddY/DAO−/−), and the heterozygous mice (ddY/DAO+/−) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for l-amino acid levels among the three strains except for l-Trp which was markedly elevated in the DAO+/− and DAO−/− mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of l-amino acids were l-Glu, l-Asp, and l-Gln in all the three strains. The lowest l-amino acid level was l-Cys in ddY/DAO+/− and ddY/DAO−/− mice, while l-Trp showed the lowest level in ddY/DAO+/+mice. The highest concentration of d-amino acid was found to be d-Ser, which also had the highest % d value (~ 25%). d-Glu had the lowest % d value (~ 0.01%) in all the three strains. Significant differences of d-Leu, d-Ala, d-Ser, d-Arg, and d-Ile were observed in ddY/DAO+/− and ddY/DAO−/− mice compared to ddY/DAO+/+ mice. This work provides the most complete baseline analysis of l- and d-amino acids in the brains of ddY/DAO+/+, ddY/DAO+/−, and ddY/DAO−/− mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

Keywords

d-amino acids HPLC-MS/MS Chiral separation Brain amino acids d-amino acid oxidase 

Notes

Acknowledgements

We would like to thank Dr. Adam L. Hartman (NIH and JHUSOM) for providing the mouse brain samples for this study, and the ddY mice used in this study were a kind gift from Thomas N. Seyfried (Boston College) to Dr. Hartman. We are also grateful to Dr. Hartman for his assistance with the statistical analysis and comments that greatly improved the manuscript. We thank AZYP, LLC, for their technical support for HPLC chiral column technology. We would also like to thank the Shimadzu Center for Advanced Analytical Chemistry for the use of the Shimadzu instrument (LCMS-8040).

Compliance with ethical standards

The study was carried out under experimental protocols approved by the Johns Hopkins Institution Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_979_MOESM1_ESM.pdf (184 kb)
ESM 1 (PDF 184 kb)

References

  1. 1.
    Auclair JL, Patton RL. On the occurrence of D-alanine in the haemolymph of the milkweed bug, Oncopeltus fasciatus. Rev Can Biol. 1950;9:3–8.Google Scholar
  2. 2.
    Stevens CM, Halpern PE, Gigger RP. Occurrence of D-amino acids in some natural materials. J Biol Chem. 1951;190:705–10.Google Scholar
  3. 3.
    Corrigan JJ. D-amino acids in animals. Science. 1969;164:142–9.CrossRefGoogle Scholar
  4. 4.
    Robinson T. D-amino acids in higher plants. Life Sci. 1976;19:1097–102.CrossRefGoogle Scholar
  5. 5.
    Armstrong DW, Duncan JD, Lee SH. Evaluation of D-amino acid levels in human urine and in commercial L-amino acid samples. Amino Acids. 1991;1:97–106.CrossRefGoogle Scholar
  6. 6.
    Armstrong DW, Gasper M, Lee SH, Zukowski J, Ercal N. D-amino acid levels in human physiological fluids. Chirality. 1993;5:375–8.CrossRefGoogle Scholar
  7. 7.
    Kullman JP, Chen X, Armstrong DW. Evaluation of the enantiomeric composition of amino acids in tobacco. Chirality. 1999;11:669–73.CrossRefGoogle Scholar
  8. 8.
    Kreil G. D-amino acids in animal peptides. Annu Rev Biochem. 1997;66:337–45.CrossRefGoogle Scholar
  9. 9.
    Ollivaux C, Soyez D, Toullec J-Y. Biogenesis of D-amino acid containing peptides/proteins: where, when and how? J Pept Sci. 2014;20:595–612.CrossRefGoogle Scholar
  10. 10.
    Armstrong DW, Zukowski J, Ercal N, Gasper M. Stereochemistry of pipecolic acid found in the urine and plasma of subjects with peroxisomal deficiencies. J Pharm Biomed Anal. 1993;11:881–6.CrossRefGoogle Scholar
  11. 11.
    Schell MJ, Brady RO Jr, Molliver ME, Snyder SH. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci. 1997;17:1604–15.CrossRefGoogle Scholar
  12. 12.
    Mothet JP, Parent AT, Wolosker H, Brady RO, Jr., Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 2000;97:4926–4931.Google Scholar
  13. 13.
    Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, et al. A Csf and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res. 2007;90:41–51.CrossRefGoogle Scholar
  14. 14.
    Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res. 2008;101:76–83.CrossRefGoogle Scholar
  15. 15.
    Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003;60:572–6.CrossRefGoogle Scholar
  16. 16.
    Tsai GE, Yang P, Chang Y-C, Chong M-Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2006;59:230–4.CrossRefGoogle Scholar
  17. 17.
    Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, et al. Increased D-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging. 2011;32:2229–43.CrossRefGoogle Scholar
  18. 18.
    D'Aniello A, Lee JM, Petrucelli L, Di Fiore MM. Regional decreases of free D-aspartate levels in Alzheimer’s disease. Neurosci Lett. 1998;250:131–4.CrossRefGoogle Scholar
  19. 19.
    Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci. 2000;2:219–32.Google Scholar
  20. 20.
    Moaddel R, Luckenbaugh DA, Xie Y, Villasenor A, Brutsche NE, Machado-Vieira R, et al. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology. 2015;232:399–409.CrossRefGoogle Scholar
  21. 21.
    Hartman AL, Santos P, O'Riordan KJ, Stafstrom CE, Hardwick JM. Potent anti-seizure effects of D-leucine. Neurobiol Dis. 2015;82:46–53.CrossRefGoogle Scholar
  22. 22.
    Holden K, Hartman AL. D-leucine: evaluation in an epilepsy model. Epilepsy Behav. 2018;78:202–9.CrossRefGoogle Scholar
  23. 23.
    Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. D-amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS Chem Neurosci. 2017;8:1251–61.CrossRefGoogle Scholar
  24. 24.
    Yoshimura T, Esak N. Amino acid racemases: functions and mechanisms. J Biosci Bioeng. 2003;96:103–9.CrossRefGoogle Scholar
  25. 25.
    Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A. 1999;96:721–5.CrossRefGoogle Scholar
  26. 26.
    Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, et al. Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A. 2010;107:3175–9.CrossRefGoogle Scholar
  27. 27.
    Krebs HA. Metabolism of amino-acids: deamination of amino-acids. Biochem J. 1935;29:1620–44.CrossRefGoogle Scholar
  28. 28.
    Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 2007;64:1373–94.CrossRefGoogle Scholar
  29. 29.
    Sacchi S, Caldinelli L, Cappelletti P, Pollegioni L, Molla G. Structure-function relationships in human D-amino acid oxidase. Amino Acids. 2012;43:1833–50.CrossRefGoogle Scholar
  30. 30.
    Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K. Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Anal Biochem. 2001;298:253–8.CrossRefGoogle Scholar
  31. 31.
    Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K. Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino-acid oxidase activity. J Chromatogr B. 2001;757:119–25.CrossRefGoogle Scholar
  32. 32.
    Sasaki M, Konno R, Nihio M, Niwa A, Yasumura Y, Enami J. A single-base-pair substitution abolishes D-amino-acid oxidase activity in the mouse. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1992;1139:315–8.CrossRefGoogle Scholar
  33. 33.
    Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.CrossRefGoogle Scholar
  34. 34.
    Kontro P, Marnela KM, Oja SS. GABA, taurine and hypotaurine in developing mouse brain. Acta Physiol Scand Suppl. 1984;537:71–4.Google Scholar
  35. 35.
    Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562–73.CrossRefGoogle Scholar
  36. 36.
    Pawlowska M, Chen S, Armstrong DW. Enantiomeric separation of fluorescent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, tagged amino acids. J Chromatogr A. 1993;641:257–65.CrossRefGoogle Scholar
  37. 37.
    Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta. 2017;963:164–74.CrossRefGoogle Scholar
  38. 38.
    Armstrong DW, Liu Y, Ekborgott KH. A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality. 1995;7:474–97.CrossRefGoogle Scholar
  39. 39.
    Karlsson C, Karlsson L, Armstrong DW, Owens PK. Evaluation of a vancomycin chiral stationary phase in capillary electrochromatography using polar organic and reversed-phase modes. Anal Chem. 2000;72:4394–401.CrossRefGoogle Scholar
  40. 40.
    Péter A, Vékes E, Armstrong DW. Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase. J Chromatogr A. 2002;958:89–107.CrossRefGoogle Scholar
  41. 41.
    US-FDA. Guidance for industry-bioanalytic method validation. 2001.Google Scholar
  42. 42.
    Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K. Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B. 2009;877:2506–12.CrossRefGoogle Scholar
  43. 43.
    Suzuki S, Mori A. Regional distribution of tyrosine, tryptophan, and their metabolites in the brain of epileptic el mice. Neurochem Res. 1992;17:693–8.CrossRefGoogle Scholar
  44. 44.
    Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M. Roles of glutamine in neurotransmission. Neuron Glia Biol. 2010;6:263–76.CrossRefGoogle Scholar
  45. 45.
    Wu J-Y, Prentice H. Role of taurine in the central nervous system. J Biomed Sci. 2010;17:S1–S.CrossRefGoogle Scholar
  46. 46.
    Okamoto K, Kimura H, Sakai Y. Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res. 1983;259:319–23.CrossRefGoogle Scholar
  47. 47.
    Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–205.CrossRefGoogle Scholar
  48. 48.
    Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res. 1998;23:635–44.CrossRefGoogle Scholar
  49. 49.
    Fernstrom JD, Wurtman RJ. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science. 1972;178:414–6.CrossRefGoogle Scholar
  50. 50.
    Silber BY, Schmitt JAJ. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34:387–407.CrossRefGoogle Scholar
  51. 51.
    Pritchett D, Hasan S, Tam SK, Engle SJ, Brandon NJ, Sharp T, et al. D-amino acid oxidase knockout (DAO(−/−) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci. 2015;41:1167–79.CrossRefGoogle Scholar
  52. 52.
    Frick A, Åhs F, Engman J, et al. Serotonin synthesis and reuptake in social anxiety disorder: a positron emission tomography study. JAMA Psychiatry. 2015;72:794–802.CrossRefGoogle Scholar
  53. 53.
    Navarro E, Alonso SJ, Martin FA, Castellano MA. Toxicological and pharmacological effects of D-arginine. Basic Clin Pharmacol Toxicol. 2005;97:149–54.CrossRefGoogle Scholar
  54. 54.
    D'Aniello A, D'Onofrio G, Pischetola M, D'Aniello G, Vetere A, Petrucelli L, et al. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J Biol Chem. 1993;268:26941–9.Google Scholar
  55. 55.
    Adage T, Trillat A-C, Quattropani A, Perrin D, Cavarec L, Shaw J, et al. In vitro and in vivo pharmacological profile of As057278, a selective D-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol. 2008;18:200–14.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siqi Du
    • 1
  • Yadi Wang
    • 1
  • Choyce A. Weatherly
    • 1
  • Kylie Holden
    • 2
  • Daniel W. Armstrong
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations