Skip to main content

Advertisement

Log in

Variations of l- and d-amino acid levels in the brain of wild-type and mutant mice lacking d-amino acid oxidase activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

d-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some d-amino acids are metabolized by d-amino acid oxidase (DAO), while d-Asp and d-Glu are metabolized by d-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO+/+), mutant mice lacking DAO activity (ddY/DAO−/−), and the heterozygous mice (ddY/DAO+/−) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for l-amino acid levels among the three strains except for l-Trp which was markedly elevated in the DAO+/− and DAO−/− mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of l-amino acids were l-Glu, l-Asp, and l-Gln in all the three strains. The lowest l-amino acid level was l-Cys in ddY/DAO+/− and ddY/DAO−/− mice, while l-Trp showed the lowest level in ddY/DAO+/+mice. The highest concentration of d-amino acid was found to be d-Ser, which also had the highest % d value (~ 25%). d-Glu had the lowest % d value (~ 0.01%) in all the three strains. Significant differences of d-Leu, d-Ala, d-Ser, d-Arg, and d-Ile were observed in ddY/DAO+/− and ddY/DAO−/− mice compared to ddY/DAO+/+ mice. This work provides the most complete baseline analysis of l- and d-amino acids in the brains of ddY/DAO+/+, ddY/DAO+/−, and ddY/DAO−/− mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Auclair JL, Patton RL. On the occurrence of D-alanine in the haemolymph of the milkweed bug, Oncopeltus fasciatus. Rev Can Biol. 1950;9:3–8.

    CAS  Google Scholar 

  2. Stevens CM, Halpern PE, Gigger RP. Occurrence of D-amino acids in some natural materials. J Biol Chem. 1951;190:705–10.

    CAS  Google Scholar 

  3. Corrigan JJ. D-amino acids in animals. Science. 1969;164:142–9.

    Article  CAS  Google Scholar 

  4. Robinson T. D-amino acids in higher plants. Life Sci. 1976;19:1097–102.

    Article  CAS  Google Scholar 

  5. Armstrong DW, Duncan JD, Lee SH. Evaluation of D-amino acid levels in human urine and in commercial L-amino acid samples. Amino Acids. 1991;1:97–106.

    Article  CAS  Google Scholar 

  6. Armstrong DW, Gasper M, Lee SH, Zukowski J, Ercal N. D-amino acid levels in human physiological fluids. Chirality. 1993;5:375–8.

    Article  CAS  Google Scholar 

  7. Kullman JP, Chen X, Armstrong DW. Evaluation of the enantiomeric composition of amino acids in tobacco. Chirality. 1999;11:669–73.

    Article  CAS  Google Scholar 

  8. Kreil G. D-amino acids in animal peptides. Annu Rev Biochem. 1997;66:337–45.

    Article  CAS  Google Scholar 

  9. Ollivaux C, Soyez D, Toullec J-Y. Biogenesis of D-amino acid containing peptides/proteins: where, when and how? J Pept Sci. 2014;20:595–612.

    Article  CAS  Google Scholar 

  10. Armstrong DW, Zukowski J, Ercal N, Gasper M. Stereochemistry of pipecolic acid found in the urine and plasma of subjects with peroxisomal deficiencies. J Pharm Biomed Anal. 1993;11:881–6.

    Article  CAS  Google Scholar 

  11. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci. 1997;17:1604–15.

    Article  CAS  Google Scholar 

  12. Mothet JP, Parent AT, Wolosker H, Brady RO, Jr., Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 2000;97:4926–4931.

  13. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, et al. A Csf and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res. 2007;90:41–51.

    Article  Google Scholar 

  14. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res. 2008;101:76–83.

    Article  Google Scholar 

  15. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003;60:572–6.

    Article  CAS  Google Scholar 

  16. Tsai GE, Yang P, Chang Y-C, Chong M-Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2006;59:230–4.

    Article  CAS  Google Scholar 

  17. Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, et al. Increased D-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging. 2011;32:2229–43.

    Article  CAS  Google Scholar 

  18. D'Aniello A, Lee JM, Petrucelli L, Di Fiore MM. Regional decreases of free D-aspartate levels in Alzheimer’s disease. Neurosci Lett. 1998;250:131–4.

    Article  Google Scholar 

  19. Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci. 2000;2:219–32.

    CAS  Google Scholar 

  20. Moaddel R, Luckenbaugh DA, Xie Y, Villasenor A, Brutsche NE, Machado-Vieira R, et al. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology. 2015;232:399–409.

    Article  CAS  Google Scholar 

  21. Hartman AL, Santos P, O'Riordan KJ, Stafstrom CE, Hardwick JM. Potent anti-seizure effects of D-leucine. Neurobiol Dis. 2015;82:46–53.

    Article  CAS  Google Scholar 

  22. Holden K, Hartman AL. D-leucine: evaluation in an epilepsy model. Epilepsy Behav. 2018;78:202–9.

    Article  Google Scholar 

  23. Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. D-amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS Chem Neurosci. 2017;8:1251–61.

    Article  CAS  Google Scholar 

  24. Yoshimura T, Esak N. Amino acid racemases: functions and mechanisms. J Biosci Bioeng. 2003;96:103–9.

    Article  CAS  Google Scholar 

  25. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A. 1999;96:721–5.

    Article  CAS  Google Scholar 

  26. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, et al. Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A. 2010;107:3175–9.

    Article  CAS  Google Scholar 

  27. Krebs HA. Metabolism of amino-acids: deamination of amino-acids. Biochem J. 1935;29:1620–44.

    Article  CAS  Google Scholar 

  28. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 2007;64:1373–94.

    Article  CAS  Google Scholar 

  29. Sacchi S, Caldinelli L, Cappelletti P, Pollegioni L, Molla G. Structure-function relationships in human D-amino acid oxidase. Amino Acids. 2012;43:1833–50.

    Article  CAS  Google Scholar 

  30. Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K. Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Anal Biochem. 2001;298:253–8.

    Article  CAS  Google Scholar 

  31. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K. Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino-acid oxidase activity. J Chromatogr B. 2001;757:119–25.

    Article  CAS  Google Scholar 

  32. Sasaki M, Konno R, Nihio M, Niwa A, Yasumura Y, Enami J. A single-base-pair substitution abolishes D-amino-acid oxidase activity in the mouse. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1992;1139:315–8.

    Article  CAS  Google Scholar 

  33. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.

    Article  CAS  Google Scholar 

  34. Kontro P, Marnela KM, Oja SS. GABA, taurine and hypotaurine in developing mouse brain. Acta Physiol Scand Suppl. 1984;537:71–4.

    CAS  Google Scholar 

  35. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562–73.

    Article  CAS  Google Scholar 

  36. Pawlowska M, Chen S, Armstrong DW. Enantiomeric separation of fluorescent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, tagged amino acids. J Chromatogr A. 1993;641:257–65.

    Article  CAS  Google Scholar 

  37. Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta. 2017;963:164–74.

    Article  CAS  Google Scholar 

  38. Armstrong DW, Liu Y, Ekborgott KH. A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality. 1995;7:474–97.

    Article  CAS  Google Scholar 

  39. Karlsson C, Karlsson L, Armstrong DW, Owens PK. Evaluation of a vancomycin chiral stationary phase in capillary electrochromatography using polar organic and reversed-phase modes. Anal Chem. 2000;72:4394–401.

    Article  CAS  Google Scholar 

  40. Péter A, Vékes E, Armstrong DW. Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase. J Chromatogr A. 2002;958:89–107.

    Article  Google Scholar 

  41. US-FDA. Guidance for industry-bioanalytic method validation. 2001.

  42. Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K. Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B. 2009;877:2506–12.

    Article  CAS  Google Scholar 

  43. Suzuki S, Mori A. Regional distribution of tyrosine, tryptophan, and their metabolites in the brain of epileptic el mice. Neurochem Res. 1992;17:693–8.

    Article  CAS  Google Scholar 

  44. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M. Roles of glutamine in neurotransmission. Neuron Glia Biol. 2010;6:263–76.

    Article  Google Scholar 

  45. Wu J-Y, Prentice H. Role of taurine in the central nervous system. J Biomed Sci. 2010;17:S1–S.

    Article  Google Scholar 

  46. Okamoto K, Kimura H, Sakai Y. Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res. 1983;259:319–23.

    Article  CAS  Google Scholar 

  47. Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–205.

    Article  Google Scholar 

  48. Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res. 1998;23:635–44.

    Article  CAS  Google Scholar 

  49. Fernstrom JD, Wurtman RJ. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science. 1972;178:414–6.

    Article  CAS  Google Scholar 

  50. Silber BY, Schmitt JAJ. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34:387–407.

    Article  CAS  Google Scholar 

  51. Pritchett D, Hasan S, Tam SK, Engle SJ, Brandon NJ, Sharp T, et al. D-amino acid oxidase knockout (DAO(−/−) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci. 2015;41:1167–79.

    Article  Google Scholar 

  52. Frick A, Åhs F, Engman J, et al. Serotonin synthesis and reuptake in social anxiety disorder: a positron emission tomography study. JAMA Psychiatry. 2015;72:794–802.

    Article  Google Scholar 

  53. Navarro E, Alonso SJ, Martin FA, Castellano MA. Toxicological and pharmacological effects of D-arginine. Basic Clin Pharmacol Toxicol. 2005;97:149–54.

    Article  CAS  Google Scholar 

  54. D'Aniello A, D'Onofrio G, Pischetola M, D'Aniello G, Vetere A, Petrucelli L, et al. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J Biol Chem. 1993;268:26941–9.

    Google Scholar 

  55. Adage T, Trillat A-C, Quattropani A, Perrin D, Cavarec L, Shaw J, et al. In vitro and in vivo pharmacological profile of As057278, a selective D-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol. 2008;18:200–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Adam L. Hartman (NIH and JHUSOM) for providing the mouse brain samples for this study, and the ddY mice used in this study were a kind gift from Thomas N. Seyfried (Boston College) to Dr. Hartman. We are also grateful to Dr. Hartman for his assistance with the statistical analysis and comments that greatly improved the manuscript. We thank AZYP, LLC, for their technical support for HPLC chiral column technology. We would also like to thank the Shimadzu Center for Advanced Analytical Chemistry for the use of the Shimadzu instrument (LCMS-8040).

Funding

This work was supported by the Robert A. Welch Foundation (Y0026) (DWA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

The study was carried out under experimental protocols approved by the Johns Hopkins Institution Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Wang, Y., Weatherly, C.A. et al. Variations of l- and d-amino acid levels in the brain of wild-type and mutant mice lacking d-amino acid oxidase activity. Anal Bioanal Chem 410, 2971–2979 (2018). https://doi.org/10.1007/s00216-018-0979-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0979-9

Keywords

Navigation