Skip to main content
Log in

Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I0/I at 648 nm are proportional to the concentrations of Hg2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.

    Article  CAS  Google Scholar 

  2. Chen C, Wang R, Guo L, Fu N, Dong H, Yuan Y. A Squaraine-based colorimetric and “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. Org Lett. 2011;13:1162–5.

    Article  CAS  Google Scholar 

  3. Mello JV, Finney NS. Reversing the discovery paradigm: a new approach to the combinatorial discovery of fluorescent chemosensors. J Am Chem Soc. 2005;127:10124–5.

    Article  Google Scholar 

  4. Yoon S, Miller EW, He Q, Do PH, Chang C. A bright and specific fluorescent sensor for mercury in water, cells, and tissue. J Angew Chem Int Ed. 2007;119:6778–81.

    Article  Google Scholar 

  5. Environmental Protection Agency, Office of Water: Washington, DC, U.S. EPA. 2001.

  6. Mercury update: impact on fish advisories, EPA Fact Sheet EPA-823-F-01-001.

  7. Hanna CP, Tyson JF, McIntosh S. Determination of total mercury in waters and urine by flow injection atomic absorption spectrometry procedures involving on- and off-line oxidation of organomercury species. Anal Chem. 1993;65:653–6.

    Article  CAS  Google Scholar 

  8. Wang Y, Zhou L, Wang S, Li J, Tang J, Wang S, et al. Sensitive and selective detection of Hg2+ based on an electrochemical platform of PDDA functionalized rGO and glutaraldehyde crosslinked chitosan composite film. RSC Adv. 2016;6:69815–21.

    Article  CAS  Google Scholar 

  9. Goswami S, Sen D, Das NK. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett. 2010;12:856–9.

    Article  CAS  Google Scholar 

  10. Bennun L, Gomez J. Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold. Spectrochim Acta B. 1997;52:1195–200.

    Article  Google Scholar 

  11. Moreton JA, Delves HT. Simple direct method for the determination of total mercury levels in blood and urine and nitric acid digests of fish by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1998;13:659–65.

    Article  CAS  Google Scholar 

  12. He ML, Troiano J, Wang A, Goh K. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. In: Whitacre DM, editor. Rev Environ Contam Toxicol, vol. 195. New York: Springer; 2008. p. 71–91.

    Chapter  Google Scholar 

  13. Hintzen EP, Lydy MJ, Belden JB. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut. 2009;157:110–1.

    Article  CAS  Google Scholar 

  14. Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep. 2015;5:8784–93.

    Article  CAS  Google Scholar 

  15. Wang X, Zhao X, Liu X, Li Y, Fu L, Hu J, et al. Homogeneous liquid–liquid extraction combined with gas chromatography–electron capture detector for the determination of three pesticide residues in soils. Anal Chim Acta. 2008;620:162–9.

    Article  CAS  Google Scholar 

  16. Lofty HM, El-A A, El-Aleem AA, Monir HH. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography. Bull Fac Pharm Cairo Univ. 2013;51:255–60.

    Article  Google Scholar 

  17. Huang XH, Zhao XH, Lu XT, Tian HP, Xu AJ, Liu Y, et al. Simultaneous determination of 50 residual pesticides in Flos Chrysanthemi using accelerated solvent extraction and gas chromatography. J Chromatogr B. 2014;967:1–7.

    Article  CAS  Google Scholar 

  18. Deme P, Azmeera T, Devi LAP, Jonnalagadda PR, Prasad RBN, Vijaya Sarathi UVR. An improved dispersive solid-phase extraction clean-up method for the gas chromatography–negative chemical ionisation tandem mass spectrometric determination of multiclass pesticide residues in edible oils. Food Chem. 2014;142:144–51.

    Article  CAS  Google Scholar 

  19. Esteve-Turrillas FA, Pastor A, Guardia MDL. Comparison of different mass spectrometric detection techniques in the gas chromatographic analysis of pyrethroid insecticide residues in soil after microwave-assisted extraction. Anal Bioanal Chem. 2006;384:801–9.

    Article  CAS  Google Scholar 

  20. Barrek S, Paisse O, Grenier-Loustalot MF. Determination of residual pesticides in olive oil by GC–MS and HPLC–MS after extraction by size-exclusion chromatography. Anal Bioanal Chem. 2003;376:355–9.

    Article  CAS  Google Scholar 

  21. Wang J, Gao L, Han D, Pan J, Qiu H, Li H, et al. Optical detection of λ-cyhalothrin by core–shell fluorescent molecularly imprinted polymers in Chinese spirits. J Agric Food Chem. 2015;63:2392–9.

    Article  CAS  Google Scholar 

  22. Tao Y, Li MQ, Ren JS, Qu XG. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63.

    Article  CAS  Google Scholar 

  23. Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nano. 2015;7:1549–65.

    CAS  Google Scholar 

  24. Song XR, Goswami N, Yang HH, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–40.

    Article  CAS  Google Scholar 

  25. Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58:409–31.

    Article  CAS  Google Scholar 

  26. Hsu NY, Microwave-assisted LYW. Synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J Chem. 2016;40:1155–61.

    Article  CAS  Google Scholar 

  27. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron. 2017;91:734–40.

    Article  CAS  Google Scholar 

  28. Yang X, Gan L, Han L, Li D, Wang J, Wang E. Facile preparation of chiral penicillamine protected gold nanoclusters and their applications in cell imaging. Chem Commun. 2013;49:2302–4.

    Article  CAS  Google Scholar 

  29. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131:888–9.

    Article  CAS  Google Scholar 

  30. Selvaprakash K, Chen YC. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron. 2017;92:410–6.

    Article  CAS  Google Scholar 

  31. Yan X, Li H, Hu T, Su X. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters. Biosens Bioelectron. 2017;91:232–7.

    Article  CAS  Google Scholar 

  32. Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc. 2005;127:5261–70.

    Article  CAS  Google Scholar 

  33. Sun J, Yang F, Yang X. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nano. 2015;7:16372–80.

    CAS  Google Scholar 

  34. Chen Y, Wang Y, Wang C, Li W, Zhou H, Jiao H, et al. Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J Colloid Interface Sci. 2013;396:63–8.

    Article  CAS  Google Scholar 

  35. Shi H, Ou MY, Cao JP, Chen GF. Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Adv. 2015;5:86740–5.

    Article  CAS  Google Scholar 

  36. Zang J, Li C, Zhou K, Dong H, Chen B, Wang F, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media. Anal Chem. 2016;88:10275–83.

    Article  CAS  Google Scholar 

  37. Bhamore JR, Jha S, Mungara AK, Singhal RK, Sonkeshariya D, Kailasa SK. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens Bioelectron. 2016;80:243–8.

    Article  CAS  Google Scholar 

  38. Xu S, Gao T, Feng X, Mao Y, Liu P, Yu X, et al. Dual ligand co-functionalized fluorescent gold nanoclusters for “turn on” sensing of glutathione in tumor cells. J Mater Chem B. 2016;4:1270–5.

    Article  CAS  Google Scholar 

  39. Chen LY, Wang CW, Yuan Z, Chang HT. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87:216–29.

    Article  CAS  Google Scholar 

  40. Jianping X, Yuangang Z, Jackie YY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun. 2010;46:961–3.

    Article  Google Scholar 

  41. Chen PC, Chiang CK, Chang HT. Synthesis of fluorescent BSA–Au NCs for the detection of Hg2+ ions. J Nanopart Res. 2013;15:1336–45.

    Article  Google Scholar 

  42. Guo CL, Irudayaraj J. Fluorescent ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem. 2011;83:2883–9.

    Article  CAS  Google Scholar 

  43. Deng L, Zhou Z, Li J, Li T, Dong S. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chem Commun. 2011;47:11065–7.

    Article  CAS  Google Scholar 

  44. Li C, Wei C. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensors Actuators B Chem. 2017;242:563–8.

    Article  CAS  Google Scholar 

  45. Hu X, Wang W, Huang Y. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta. 2016;154:409–15.

    Article  CAS  Google Scholar 

  46. Jha MK, Patra AK, Gadhia M, Ravi PM, Hegde AG, Multivariate SPK. Statistical interpretation of physico-chemical and radiological parameters of tapi river water due to the operation of kakrapar atomic power station. Int. J Environ Prot. 2012;2:22–9.

    Google Scholar 

  47. Bhamore JR, Jha S, Singhal RK, Kailasa SK. Synthesis of water dispersible fluorescent carbon nanocrystals from Syzygium cumini fruits for the detection of Fe3+ ion in water and biological samples and imaging of Fusarium avenaceum cells. J Fluoresc. 2017;27:125–34.

    Article  CAS  Google Scholar 

  48. Saineelima B, D’souza SL, Jha S, Kailasa SK. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from Carica papaya juice. J Fluoresc. 2015;25:803–10.

    Article  Google Scholar 

  49. Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C. 2014;38:20–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by Department of Science and Technology, Government of India (EMR/2016/002621/IPC). Ms. Bhamore acknowledges the Director, SVNIT, Surat for financial support under the Doctoral Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Kailasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhamore, J.R., Jha, S., Basu, H. et al. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms. Anal Bioanal Chem 410, 2781–2791 (2018). https://doi.org/10.1007/s00216-018-0958-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0958-1

Keywords

Navigation