Analytical and Bioanalytical Chemistry

, Volume 410, Issue 11, pp 2739–2749 | Cite as

Specific and robust ion chromatographic determination of hypothiocyanite in saliva samples

  • Harald Below
  • Romy Baguhl
  • Wiebke Geßner
  • Axel Kramer
  • Elke Below
  • Heike Kahlert
  • Alexander Welk
Research Paper


The enzymatic system in saliva, consisting of salivary peroxidase (SPO), hydrogen peroxide (H2O2), and thiocyanate (SCN), produces hypothiocyanite (OSCN) as a high effective antibacterial compound. OSCN is of great importance for the natural non-specific antibacterial resistance in the oral cavity. However, no analytical method currently exists to selectively quantify OSCN in saliva samples. A robust and specific analytical method for the determination of OSCN was developed based on ion chromatography with combined UV and electrochemical detection. Calibration was achieved by calculating a derived calibration factor based on the known ratio of molar extinction coefficients of SCN and OSCN. Thus, the specific quantification of OSCN in saliva samples is possible, as demonstrated here. The median value of 200 saliva samples was determined to be 0.56 mg L−1 (median), with a maximum of 3.9 mg L−1; the minimum value was below the detection limit (< 0.09 mg L−1). The recovery rate in individual saliva samples was 95 ± 8%.


Hypothiocyanite Thiocyanate Ion chromatography Saliva peroxidase 



The study was supported by the European Regional Development Fund: V-630-S-137-2012/024, V-630-F-137-2012/023, V-630-VB243-2012/022 (Mecklenburg-Western Pomerania Ministry for Economics, Employment and Tourism/Bmp Bulk Medicines & Pharmaceuticals Production GmbH) and by University Medicine Greifswald.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2018_954_MOESM1_ESM.pdf (658 kb)
ESM 1 (PDF 658 kb)


  1. 1.
    Hawkins CL. The role of hypothiocyanous acid (HOSCN) in biological systems. Free Rad Res. 2009;43(12):1147–58.CrossRefGoogle Scholar
  2. 2.
    Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol. 2012;84(11):1381–7.CrossRefGoogle Scholar
  3. 3.
    Van Haeringen NJ, Ensink FTE, Glasius E. Peroxidase-thiocyanate-hydrogenperoxide system in tear fluid and saliva of different species. Exp Eye Res. 1979;28(3):343–7.CrossRefGoogle Scholar
  4. 4.
    Haddadin MS, Ibrahim SA, Robinson RK. Preservation of raw milk by activation of the natural lactoperoxidase systems. Food Control. 1996;7(3):149–52.CrossRefGoogle Scholar
  5. 5.
    Gerson C, Sabater J, Scuri M, Torbati A, Coffey R, Abraham JW, et al. The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol. 2000;22(6):665–71.CrossRefGoogle Scholar
  6. 6.
    Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R, Gerson C, Cobas MA, Forteza R, et al. Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol. 2003;29(2):206–12.CrossRefGoogle Scholar
  7. 7.
    Reiter B, Härnulv BG. Lactoperoxidase thiocyanate hydrogen-peroxide—a natural antibacterial system. Kieler Milchw Forsch. 1982;34(1):50–3.Google Scholar
  8. 8.
    Shin K, Horigome A, Yamauchi K, Takase M, Yaeshima T, Iwatsuki K. Effects of orally administered bovine lactoperoxidase on dextran sulfate sodium-induced colitis in mice. Biosci Biotechnol Biochem. 2008;72(7):1932–5.CrossRefGoogle Scholar
  9. 9.
    Bafort F, Parisi O, Perraudin JP, Jijakli MH. Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res. 2014;2014:1–13.CrossRefGoogle Scholar
  10. 10.
    Tenovuo J. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis. 2002;8(1):23–9.CrossRefGoogle Scholar
  11. 11.
    Aune TM, Thomas EL. Accumulation of hypothiocyanate ion during peroxidase-catalysed oxidation of thiocyanate ion. Eur J Biochem. 1977;80:209–14.CrossRefGoogle Scholar
  12. 12.
    Aune TM, Thomas EL. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemist. 1978;17(6):1005–10.CrossRefGoogle Scholar
  13. 13.
    Pruitt KM, Adamson M, Arnold R. Lactoperoxidase binding to streptococci. Infect Immun. 1979;25(1):304–9.Google Scholar
  14. 14.
    Thomas EL, Bates KP, Jefferson MM. Hypothiocyanate ion: detection of the antimicrobial agent in human saliva. J Dent Res. 1980;59:1466–72.CrossRefGoogle Scholar
  15. 15.
    Carlsson J. Catalytic activity of lactoperoxidase in the presence of SCN. Biochem Biophys Res Commun. 1983;116(2):568–73.CrossRefGoogle Scholar
  16. 16.
    Tenovuo J, Pruitt KM, Mansson-Rahemtulla B, Harrington P, Baldone DC. Products of thiocyanate peroxidation: properties and reaction mechanisms. Biochim Biophys Acta. 1986;870:377–84.CrossRefGoogle Scholar
  17. 17.
    Gau J, Furtmüller P-G, Obinger C, Arnhold J, Flemmig J. Enhancing hypothiocyanite production by lactoperoxidase—mechanism and chemical properties of promotors. Biochem Biophys Rep. 2015;4:257–67.Google Scholar
  18. 18.
    Hoogendoorn H, Piessens JP, Scholtes W, Stoddard LA. Hypothiocyanite ion; the inhibitor formed by the system lactoperoxidase-thiocyanate-hydrogen peroxide. I. Identification of the inhibiting compound. Caries Res. 1977;11(2):77–84.CrossRefGoogle Scholar
  19. 19.
    Hoogendoorn H, Scholtes W. Effect of inhibitor of lactoperoxidase system on glycolysis of different microorganisms. Caries Res. 1977;11(2):123.CrossRefGoogle Scholar
  20. 20.
    Pruitt KM, Tenovuo J. Kinetics of hypothiocyanite production during peroxidase-catalyzed oxidation of thiocyanate. Biochim Biophys Acta. 1982;704(2):204–14.CrossRefGoogle Scholar
  21. 21.
    Hogg DM, Jago GR. The antibacterial action of lactoperoxidase. The nature of the bacterial inhibitor. Biochem J. 1970;117(4):779–90.CrossRefGoogle Scholar
  22. 22.
    Nagy P, Wang X, Lemma K, Ashby MT. Reactive sulfur species: hydrolysis of hypothiocyanite to give thiocarbamate-S-oxide. J Am Chem Soc. 2007;129(51):15756–7.CrossRefGoogle Scholar
  23. 23.
    Kalmar J, Woldegiorgis KL, Biri B, Ashby MT. Mechanism of decomposition of the human defense factor hypothiocyanite near physiological pH. J Am Chem Soc. 2011;133(49):19911–21.CrossRefGoogle Scholar
  24. 24.
    Seifu E, Buys EM, Donkin EF. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trend Food Sci Tech. 2005;16(4):137–54.CrossRefGoogle Scholar
  25. 25.
    Thomas EL. Lactoperoxidase-catalysed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochemist. 1981;20:3273–80.CrossRefGoogle Scholar
  26. 26.
    Nagy P, Alguindigue SS, Ashby MT. Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy. Biochemist. 2006;45(41):12610–6.CrossRefGoogle Scholar
  27. 27.
    Hegde S, Chatterjee E, Rajesh KS, Kumar MS. Estimation and correlation of salivary thiocyanate levels in periodontally healthy subjects, smokers, nonsmokers, and gutka-chewers with chronic periodontitis. Indian J Dent Res. 2016;27(1):12–4.CrossRefGoogle Scholar
  28. 28.
    Pruitt KM, Tenovuo J, Fleming W, Adamson M. Limiting factors for the generation of hypothiocyanite ion, an antimicrobial agent, in human saliva. Caries Res. 1982;16(4):315–23.CrossRefGoogle Scholar
  29. 29.
    Yang BC, Zhang FF, Liang XM. Recent development in capillary ion chromatography technology. Cent Eur J Chem. 2012;10(3):472–9.Google Scholar
  30. 30.
    Christy AA, Egeberg PK. Oxidation of thiocyanate by hydrogen peroxide—a reaction kinetic study by capillary electrophoresis. Talanta. 2000;51(6):1049–58.CrossRefGoogle Scholar
  31. 31.
    DIN 32645. Chemical analysis: decision limit, detection limit and determination limit: estimation in case of repeatability, terms, methods, evaluation. Berlin: Beuth Verlag; 2011.Google Scholar
  32. 32.
    Collier HB. Note on molar absorptivity of reduced Ellmans reagent, 3-carboxylato-4-nitrothiophenolate. Anal Biochem. 1973;56(1):310–1.CrossRefGoogle Scholar
  33. 33.
    Riddles PW, Blakeley RL, Zerner B. Reassessment of Ellman reagent. Method Enzymol. 1983;91:49–60.CrossRefGoogle Scholar
  34. 34.
    Kgesa T, Choonara YE, Tyagi C, Tomar LK, Kumar P, du Toit LC, et al. Disulphide-thiol chemistry: a multi-faceted tool for macromolecular design and synthesis of polyfunctional materials for specialized drug delivery. Curr Drug Deliv. 2015;12(3):282–98.CrossRefGoogle Scholar
  35. 35.
    Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem. 2009;394(2):147–58.CrossRefGoogle Scholar
  36. 36.
    Winther JR, Thorpe C. Quantification of thiols and disulfides. Bba-Gen Subjects. 2014;1840(2):838–46.CrossRefGoogle Scholar
  37. 37.
    Flemmig J, Rusch D, Czerwinska ME, Rauwald HW, Arnhold J. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase. Arch Biochem Biophys. 2014;549:17–25.CrossRefGoogle Scholar
  38. 38.
    Thürkow B, Jess G, Weuffen W. Comparative studies on the determination of thiocyanate in biological-materials. Pharmazie. 1982;37(4):264–9.Google Scholar
  39. 39.
    Valdes MG, Diaz-Garcia ME. Determination of thiocyanate within physiological fluids and environmental samples: current practice and future trends. Crit Rev Anal Chem. 2004;34(1):9–23.CrossRefGoogle Scholar
  40. 40.
    De Brabander HF, Verbeke R. Determination of thiocyanate in tissues and body-fluids of animals by gas-chromatography with electron-capture detection. J Chromatogr. 1977;138(1):131–42.CrossRefGoogle Scholar
  41. 41.
    Vesey CJ, Kirk CJC. Two automated methods for measuring plasma thiocyanate compared. Clin Chem. 1985;31(2):270–4.Google Scholar
  42. 42.
    Singh RP, Smesko SA, Abbas NM. Ion chromatographic characterization of toxic solutions: analysis and ion chemistry of biological liquids. J Chromatogr A. 1997;774(1–2):21–35.CrossRefGoogle Scholar
  43. 43.
    Chen ZF, Darvell BW, Leung VWH. Validation of ion chromatography for human salivary anionic analysis. Arch Oral Biol. 2004;49(11):855–62.CrossRefGoogle Scholar
  44. 44.
    Tenovuo J, Pruitt KM. Relationship of the human salivary peroxidase system to oral health. J Oral Pathol. 1984;13(6):573–84.CrossRefGoogle Scholar
  45. 45.
    Courtois P, Pourtois M. Purification of NADH: hypothiocyanite oxidoreductase in Streptococcus sanguis. Biochem Mol Med. 1996;57(2):134–8.CrossRefGoogle Scholar
  46. 46.
    Lenander-Lumikari M, Tenovuo J, Mikola H. Effects of lactoperoxidase system-containing toothpaste on levels of hypothiocyanite and bacteria in saliva. Caries Res. 1993;27:285–91.CrossRefGoogle Scholar
  47. 47.
    Kirstila V, Lenander-Lumikari M, Tenovuo J. Effects of a lactoperoxidase-system-containing toothpaste on dental plaque and whole saliva in vivo. Acta Odontol Scand. 1994;52(6):346–53.CrossRefGoogle Scholar
  48. 48.
    Tenovuo J, Anttonen T. Peroxidase-catalyzed hypothiocyanite production in human salivary sediment in relation to oral health. Caries Res. 1980;14(5):269–75.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Harald Below
    • 1
  • Romy Baguhl
    • 1
  • Wiebke Geßner
    • 1
  • Axel Kramer
    • 1
  • Elke Below
    • 2
  • Heike Kahlert
    • 3
  • Alexander Welk
    • 4
  1. 1.Institute of Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Institute of Forensic ScienceUniversity Medicine GreifswaldGreifswaldGermany
  3. 3.Institute of BiochemistryUniversity GreifswaldGreifswaldGermany
  4. 4.Department of Restorative Dentistry, Periodontology and Endodontology, Dental SchoolUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations