Skip to main content

Advertisement

Log in

Specific and robust ion chromatographic determination of hypothiocyanite in saliva samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The enzymatic system in saliva, consisting of salivary peroxidase (SPO), hydrogen peroxide (H2O2), and thiocyanate (SCN), produces hypothiocyanite (OSCN) as a high effective antibacterial compound. OSCN is of great importance for the natural non-specific antibacterial resistance in the oral cavity. However, no analytical method currently exists to selectively quantify OSCN in saliva samples. A robust and specific analytical method for the determination of OSCN was developed based on ion chromatography with combined UV and electrochemical detection. Calibration was achieved by calculating a derived calibration factor based on the known ratio of molar extinction coefficients of SCN and OSCN. Thus, the specific quantification of OSCN in saliva samples is possible, as demonstrated here. The median value of 200 saliva samples was determined to be 0.56 mg L−1 (median), with a maximum of 3.9 mg L−1; the minimum value was below the detection limit (< 0.09 mg L−1). The recovery rate in individual saliva samples was 95 ± 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawkins CL. The role of hypothiocyanous acid (HOSCN) in biological systems. Free Rad Res. 2009;43(12):1147–58.

    Article  CAS  Google Scholar 

  2. Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol. 2012;84(11):1381–7.

    Article  CAS  Google Scholar 

  3. Van Haeringen NJ, Ensink FTE, Glasius E. Peroxidase-thiocyanate-hydrogenperoxide system in tear fluid and saliva of different species. Exp Eye Res. 1979;28(3):343–7.

    Article  Google Scholar 

  4. Haddadin MS, Ibrahim SA, Robinson RK. Preservation of raw milk by activation of the natural lactoperoxidase systems. Food Control. 1996;7(3):149–52.

    Article  Google Scholar 

  5. Gerson C, Sabater J, Scuri M, Torbati A, Coffey R, Abraham JW, et al. The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol. 2000;22(6):665–71.

    Article  CAS  Google Scholar 

  6. Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R, Gerson C, Cobas MA, Forteza R, et al. Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol. 2003;29(2):206–12.

    Article  CAS  Google Scholar 

  7. Reiter B, Härnulv BG. Lactoperoxidase thiocyanate hydrogen-peroxide—a natural antibacterial system. Kieler Milchw Forsch. 1982;34(1):50–3.

    Google Scholar 

  8. Shin K, Horigome A, Yamauchi K, Takase M, Yaeshima T, Iwatsuki K. Effects of orally administered bovine lactoperoxidase on dextran sulfate sodium-induced colitis in mice. Biosci Biotechnol Biochem. 2008;72(7):1932–5.

    Article  CAS  Google Scholar 

  9. Bafort F, Parisi O, Perraudin JP, Jijakli MH. Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res. 2014;2014:1–13.

    Article  Google Scholar 

  10. Tenovuo J. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis. 2002;8(1):23–9.

    Article  CAS  Google Scholar 

  11. Aune TM, Thomas EL. Accumulation of hypothiocyanate ion during peroxidase-catalysed oxidation of thiocyanate ion. Eur J Biochem. 1977;80:209–14.

    Article  CAS  Google Scholar 

  12. Aune TM, Thomas EL. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemist. 1978;17(6):1005–10.

    Article  CAS  Google Scholar 

  13. Pruitt KM, Adamson M, Arnold R. Lactoperoxidase binding to streptococci. Infect Immun. 1979;25(1):304–9.

    CAS  Google Scholar 

  14. Thomas EL, Bates KP, Jefferson MM. Hypothiocyanate ion: detection of the antimicrobial agent in human saliva. J Dent Res. 1980;59:1466–72.

    Article  CAS  Google Scholar 

  15. Carlsson J. Catalytic activity of lactoperoxidase in the presence of SCN. Biochem Biophys Res Commun. 1983;116(2):568–73.

    Article  CAS  Google Scholar 

  16. Tenovuo J, Pruitt KM, Mansson-Rahemtulla B, Harrington P, Baldone DC. Products of thiocyanate peroxidation: properties and reaction mechanisms. Biochim Biophys Acta. 1986;870:377–84.

    Article  CAS  Google Scholar 

  17. Gau J, Furtmüller P-G, Obinger C, Arnhold J, Flemmig J. Enhancing hypothiocyanite production by lactoperoxidase—mechanism and chemical properties of promotors. Biochem Biophys Rep. 2015;4:257–67.

    Google Scholar 

  18. Hoogendoorn H, Piessens JP, Scholtes W, Stoddard LA. Hypothiocyanite ion; the inhibitor formed by the system lactoperoxidase-thiocyanate-hydrogen peroxide. I. Identification of the inhibiting compound. Caries Res. 1977;11(2):77–84.

    Article  CAS  Google Scholar 

  19. Hoogendoorn H, Scholtes W. Effect of inhibitor of lactoperoxidase system on glycolysis of different microorganisms. Caries Res. 1977;11(2):123.

    Article  Google Scholar 

  20. Pruitt KM, Tenovuo J. Kinetics of hypothiocyanite production during peroxidase-catalyzed oxidation of thiocyanate. Biochim Biophys Acta. 1982;704(2):204–14.

    Article  CAS  Google Scholar 

  21. Hogg DM, Jago GR. The antibacterial action of lactoperoxidase. The nature of the bacterial inhibitor. Biochem J. 1970;117(4):779–90.

    Article  CAS  Google Scholar 

  22. Nagy P, Wang X, Lemma K, Ashby MT. Reactive sulfur species: hydrolysis of hypothiocyanite to give thiocarbamate-S-oxide. J Am Chem Soc. 2007;129(51):15756–7.

    Article  CAS  Google Scholar 

  23. Kalmar J, Woldegiorgis KL, Biri B, Ashby MT. Mechanism of decomposition of the human defense factor hypothiocyanite near physiological pH. J Am Chem Soc. 2011;133(49):19911–21.

    Article  CAS  Google Scholar 

  24. Seifu E, Buys EM, Donkin EF. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trend Food Sci Tech. 2005;16(4):137–54.

    Article  CAS  Google Scholar 

  25. Thomas EL. Lactoperoxidase-catalysed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochemist. 1981;20:3273–80.

    Article  CAS  Google Scholar 

  26. Nagy P, Alguindigue SS, Ashby MT. Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy. Biochemist. 2006;45(41):12610–6.

    Article  CAS  Google Scholar 

  27. Hegde S, Chatterjee E, Rajesh KS, Kumar MS. Estimation and correlation of salivary thiocyanate levels in periodontally healthy subjects, smokers, nonsmokers, and gutka-chewers with chronic periodontitis. Indian J Dent Res. 2016;27(1):12–4.

    Article  Google Scholar 

  28. Pruitt KM, Tenovuo J, Fleming W, Adamson M. Limiting factors for the generation of hypothiocyanite ion, an antimicrobial agent, in human saliva. Caries Res. 1982;16(4):315–23.

    Article  CAS  Google Scholar 

  29. Yang BC, Zhang FF, Liang XM. Recent development in capillary ion chromatography technology. Cent Eur J Chem. 2012;10(3):472–9.

    Google Scholar 

  30. Christy AA, Egeberg PK. Oxidation of thiocyanate by hydrogen peroxide—a reaction kinetic study by capillary electrophoresis. Talanta. 2000;51(6):1049–58.

    Article  CAS  Google Scholar 

  31. DIN 32645. Chemical analysis: decision limit, detection limit and determination limit: estimation in case of repeatability, terms, methods, evaluation. Berlin: Beuth Verlag; 2011.

    Google Scholar 

  32. Collier HB. Note on molar absorptivity of reduced Ellmans reagent, 3-carboxylato-4-nitrothiophenolate. Anal Biochem. 1973;56(1):310–1.

    Article  CAS  Google Scholar 

  33. Riddles PW, Blakeley RL, Zerner B. Reassessment of Ellman reagent. Method Enzymol. 1983;91:49–60.

    Article  CAS  Google Scholar 

  34. Kgesa T, Choonara YE, Tyagi C, Tomar LK, Kumar P, du Toit LC, et al. Disulphide-thiol chemistry: a multi-faceted tool for macromolecular design and synthesis of polyfunctional materials for specialized drug delivery. Curr Drug Deliv. 2015;12(3):282–98.

    Article  CAS  Google Scholar 

  35. Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem. 2009;394(2):147–58.

    Article  CAS  Google Scholar 

  36. Winther JR, Thorpe C. Quantification of thiols and disulfides. Bba-Gen Subjects. 2014;1840(2):838–46.

    Article  CAS  Google Scholar 

  37. Flemmig J, Rusch D, Czerwinska ME, Rauwald HW, Arnhold J. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase. Arch Biochem Biophys. 2014;549:17–25.

    Article  CAS  Google Scholar 

  38. Thürkow B, Jess G, Weuffen W. Comparative studies on the determination of thiocyanate in biological-materials. Pharmazie. 1982;37(4):264–9.

    Google Scholar 

  39. Valdes MG, Diaz-Garcia ME. Determination of thiocyanate within physiological fluids and environmental samples: current practice and future trends. Crit Rev Anal Chem. 2004;34(1):9–23.

    Article  CAS  Google Scholar 

  40. De Brabander HF, Verbeke R. Determination of thiocyanate in tissues and body-fluids of animals by gas-chromatography with electron-capture detection. J Chromatogr. 1977;138(1):131–42.

    Article  Google Scholar 

  41. Vesey CJ, Kirk CJC. Two automated methods for measuring plasma thiocyanate compared. Clin Chem. 1985;31(2):270–4.

    CAS  Google Scholar 

  42. Singh RP, Smesko SA, Abbas NM. Ion chromatographic characterization of toxic solutions: analysis and ion chemistry of biological liquids. J Chromatogr A. 1997;774(1–2):21–35.

    Article  CAS  Google Scholar 

  43. Chen ZF, Darvell BW, Leung VWH. Validation of ion chromatography for human salivary anionic analysis. Arch Oral Biol. 2004;49(11):855–62.

    Article  CAS  Google Scholar 

  44. Tenovuo J, Pruitt KM. Relationship of the human salivary peroxidase system to oral health. J Oral Pathol. 1984;13(6):573–84.

    Article  CAS  Google Scholar 

  45. Courtois P, Pourtois M. Purification of NADH: hypothiocyanite oxidoreductase in Streptococcus sanguis. Biochem Mol Med. 1996;57(2):134–8.

    Article  CAS  Google Scholar 

  46. Lenander-Lumikari M, Tenovuo J, Mikola H. Effects of lactoperoxidase system-containing toothpaste on levels of hypothiocyanite and bacteria in saliva. Caries Res. 1993;27:285–91.

    Article  CAS  Google Scholar 

  47. Kirstila V, Lenander-Lumikari M, Tenovuo J. Effects of a lactoperoxidase-system-containing toothpaste on dental plaque and whole saliva in vivo. Acta Odontol Scand. 1994;52(6):346–53.

    Article  CAS  Google Scholar 

  48. Tenovuo J, Anttonen T. Peroxidase-catalyzed hypothiocyanite production in human salivary sediment in relation to oral health. Caries Res. 1980;14(5):269–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the European Regional Development Fund: V-630-S-137-2012/024, V-630-F-137-2012/023, V-630-VB243-2012/022 (Mecklenburg-Western Pomerania Ministry for Economics, Employment and Tourism/Bmp Bulk Medicines & Pharmaceuticals Production GmbH) and by University Medicine Greifswald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Below.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Below, H., Baguhl, R., Geßner, W. et al. Specific and robust ion chromatographic determination of hypothiocyanite in saliva samples. Anal Bioanal Chem 410, 2739–2749 (2018). https://doi.org/10.1007/s00216-018-0954-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0954-5

Keywords

Navigation