Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 11, pp 2711–2721 | Cite as

Phase identification of individual crystalline particles by combining EDX and EBSD: application to workplace aerosols

  • Torunn Kringlen Ervik
  • Nathalie Benker
  • Stephan Weinbruch
  • Asbjørn Skogstad
  • Yngvar Thomassen
  • Dag G. Ellingsen
  • Balázs Berlinger
Research Paper

Abstract

This paper discusses the combined use of electron backscatter diffraction (EBSD) and energy dispersive X-ray microanalysis (EDX) to identify unknown phases in particulate matter from different workplace aerosols. Particles of α-silicon carbide (α-SiC), manganese oxide (MnO) and α-quartz (α-SiO2) were used to test the method. Phase identification of spherical manganese oxide particles from ferromanganese production, with diameter less than 200 nm, was unambiguous, and phases of both MnO and Mn3O4 were identified in the same agglomerate. The same phases were identified by selected area electron diffraction (SAED) in transmission electron microscopy (TEM). The method was also used to identify the phases of different SiC fibres, and both β-SiC and α-SiC fibres were found. Our results clearly demonstrate that EBSD combined with EDX can be successfully applied to the characterisation of workplace aerosols.

Graphical abstract

Secondary electron image of an agglomerate of manganese oxide particles collected at a ferromanganese smelter (a). EDX spectrum of the particle highlighted by an arrow (b). Indexed patterns after dynamic background subtraction from three particles shown with numbers in a (c)

Keywords

Aerosols/particulates Workplace Electron backscatter diffraction Phase identification Electron microscopy 

Notes

Acknowledgments

The financial support by the Confederation of Norwegian Enterprise Working Environment Fund is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_949_MOESM1_ESM.pdf (421 kb)
ESM 1 (PDF 421 kb)

References

  1. 1.
    Dingley DJ, Baba-Kishi KZ, Randle V. Atlas of backscattering Kikuchi diffraction patterns. Bristol, Eng; Philadelphia: Institute of Physics Pub; 1995.Google Scholar
  2. 2.
    Wisniewski W, Saager S, Böbenroth A, Rüssel C. Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). Ultramicroscopy. 2017;173(Supplement C):1–9.  https://doi.org/10.1016/j.ultramic.2016.11.004.CrossRefGoogle Scholar
  3. 3.
    Chen D, Kuo J-C. The effect of atomic mass on the physical spatial resolution in EBSD. Microsc Microanal. 2013;19(S5):4–7.  https://doi.org/10.1017/S143192761301221X.CrossRefGoogle Scholar
  4. 4.
    Humphreys FJ. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scripta Mater. 2004;51(8):771–6.  https://doi.org/10.1016/j.scriptamat.2004.05.016.CrossRefGoogle Scholar
  5. 5.
    Keller RR, Geiss RH. Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc. 2012;245(3):245–51.  https://doi.org/10.1111/j.1365-2818.2011.03566.x.CrossRefGoogle Scholar
  6. 6.
    van Bremen R, Ribas Gomes D, de Jeer LTH, Ocelík V, De Hosson JTM. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy. 2016;160:256–64.  https://doi.org/10.1016/j.ultramic.2015.10.025.CrossRefGoogle Scholar
  7. 7.
    Sneddon GC, Trimby PW, Cairney JM. Transmission Kikuchi diffraction in a scanning electron microscope: a review. Mater Sci Eng R-Rep. 2016;110:1–12.  https://doi.org/10.1016/j.mser.2016.10.001.CrossRefGoogle Scholar
  8. 8.
    Dingley DJ, Wright SI. Determination of crystal phase from an electron backscatter diffraction pattern. J Appl Crystallogr. 2009;42(2):234–41.  https://doi.org/10.1107/S0021889809001654.CrossRefGoogle Scholar
  9. 9.
    Michael JR, Goehner RP. Electron backscatter diffraction: a powerful tool for phase identification in the SEM. MRS Proc 1999;589.  https://doi.org/10.1557/PROC-589-39.
  10. 10.
    Small JA, Michael JR. Phase identification of individual crystalline particles by electron backscatter diffraction. J Microsc. 2001;201:59–69.  https://doi.org/10.1046/j.1365-2818.2001.00788.x.CrossRefGoogle Scholar
  11. 11.
    Small JA, Michael JR, Bright DS. Improving the quality of electron backscatter diffraction (EBSD) patterns from nanoparticles. J Microsc. 2002;206:170–8.  https://doi.org/10.1046/j.1365-2818.2002.01015.x.CrossRefGoogle Scholar
  12. 12.
    Bauer F, Hiscock M, Lang C. Advances in the analysis of gunshot residue and other trace evidence using EDS and EBSD in the SEM. Microsc Microanal. 2016;22(S3):2046–7.  https://doi.org/10.1017/S1431927616011065.CrossRefGoogle Scholar
  13. 13.
    Bandli BR, Gunter ME. Electron backscatter diffraction from unpolished particulate specimens: examples of particle identification and application to inhalable mineral particulate identification. Am Mineral. 2012;97(8–9):1269–73.  https://doi.org/10.2138/am.2012.4155.CrossRefGoogle Scholar
  14. 14.
    Bandli BR, Gunter ME. Scanning electron microscopy and transmitted electron backscatter diffraction examination of asbestos standard reference materials, amphibole particles of differing morphology, and particle phase discrimination from talc ores. Microsc Microanal. 2014;20(6):1805–16.  https://doi.org/10.1017/S1431927614013415.CrossRefGoogle Scholar
  15. 15.
    Donaldson K, Borm P. Particle toxicology. Boca Raton, Florida: CRC Press; 2006.CrossRefGoogle Scholar
  16. 16.
    Ortner HM, Welter E. Direct speciation of solids. Handbook of elemental speciation: techniques and methodology. USA: John Wiley & Sons, Ltd; 2004. p. 505–46.Google Scholar
  17. 17.
    Føreland S, Bye E, Bakke B, Eduard W. Exposure to fibres, crystalline silica, silicon carbide and sulphur dioxide in the Norwegian silicon carbide industry. Ann Occup Hyg. 2008;52(5):317–36.  https://doi.org/10.1093/annhyg/men029.Google Scholar
  18. 18.
    Gjønnes K, Skogstad A, Hetland S, Ellingsen DG, Thomassen Y, Weinbruch S. Characterisation of workplace aerosols in the manganese alloy production industry by electron microscopy. Anal Bioanal Chem. 2011;399(3):1011–20.  https://doi.org/10.1007/s00216-010-4470-5.CrossRefGoogle Scholar
  19. 19.
    Drown DB, Oberg SG, Sharma RP. Pulmonary clearance of soluble and insoluble forms of manganese. J Toxicol Environ Health. 1986;17(2–3):201–12.CrossRefGoogle Scholar
  20. 20.
    Roels H, Meiers G, Delos M, Ortega I, Lauwerys R, Buchet JP, et al. Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol. 1997;71(4):223–30.  https://doi.org/10.1007/s002040050380.CrossRefGoogle Scholar
  21. 21.
    Bertau M, Müller A, Fröhlich P, Katzberg M. Anorganische Festkörper. Industrielle Anorganische Chemie. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 457–720.CrossRefGoogle Scholar
  22. 22.
    Skogstad A, Foreland S, Bye E, Eduard W. Airborne fibres in the Norwegian silicon carbide industry. Ann Occup Hyg. 2006;50(3):231–40.  https://doi.org/10.1093/annhyg/mei081.Google Scholar
  23. 23.
    Bye E, Eduard W, Gjonnes J, Sorbroden E. Occurrence of airborne silicon-carbide fibers during industrial-production of silicon-carbide. Scand J Work Environ Health. 1985;11(2):111–5.CrossRefGoogle Scholar
  24. 24.
    Dufresne A, Perrault G, Sébastien P, Adnot A, Baril M. Morphology and surface characteristics of particulates from silicon carbide industries. Am Ind Hyg Assoc J. 1987;48(8):718–29.  https://doi.org/10.1080/15298668791385471.CrossRefGoogle Scholar
  25. 25.
    Romundstad P, Andersen A, Haldorsen T. Cancer incidence among workers in the Norwegian silicon carbide industry. Am J Epidemiol. 2001;153(10):978–86.CrossRefGoogle Scholar
  26. 26.
    Bugge MD, Kjærheim K, Føreland S, Eduard W, Kjuus H. Lung cancer incidence among Norwegian silicon carbide industry workers: associations with particulate exposure factors. Occup Environ Med. 2012;69(8):527–33.CrossRefGoogle Scholar
  27. 27.
    Gunnæs AE, Olsen A, Skogstad A, Bye E. Morphology and structure of airborne β-SiC fibres produced during the industrial production of non-fibrous silicon carbide. J Mater Sci. 2005;40(22):6011–7.  https://doi.org/10.1007/s10853-005-4591-y.CrossRefGoogle Scholar
  28. 28.
    Bye E, Foreland S, Lundgren L, Kruse K, Ronning R. Quantitative determination of airborne respirable non-fibrous alpha-silicon carbide by x-ray powder diffractometry. Ann Occup Hyg. 2009;53(4):403–8.  https://doi.org/10.1093/annhyg/mep022.Google Scholar
  29. 29.
    Miller A, Frey G, King G, Sunderman C. A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol. 2010;44(6):417–27.  https://doi.org/10.1080/02786821003692063.CrossRefGoogle Scholar
  30. 30.
    Hough P. Inventor Methods and means for recognizing complex patterns 1962.Google Scholar
  31. 31.
    Wisniewski W, Keshavarzi A, Zscheckel T, Rüssel C. EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7. J Alloys Compd. 2017;699(Supplement C):832–40.  https://doi.org/10.1016/j.jallcom.2016.12.301.CrossRefGoogle Scholar
  32. 32.
    Wisniewski W, Patschger M, Murdzheva S, Thieme C, Rüssel C. Oriented nucleation of both Ge-fresnoite and benitoite/BaGe4O9 during the surface crystallisation of glass studied by electron backscatter diffraction. Sci Rep. 2016;6:20125.  https://doi.org/10.1038/srep20125.CrossRefGoogle Scholar
  33. 33.
    Field DP. Recent advances in the application of orientation imaging. Ultramicroscopy. 1997;67(1):1–9.  https://doi.org/10.1016/S0304-3991(96)00104-0.CrossRefGoogle Scholar
  34. 34.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.  https://doi.org/10.1038/nmeth.2019.CrossRefGoogle Scholar
  35. 35.
    Mitchell DRG. DiffTools: electron diffraction software tools for DigitalMicrograph (TM). Microsc Res Tech. 2008;71(8):588–93.  https://doi.org/10.1002/jemt.20591.CrossRefGoogle Scholar
  36. 36.
    Shaffer P. A review of the structure of silicon carbide. Acta Crystallogr Sect B: Struct Sci. 1969;25(3):477–88.  https://doi.org/10.1107/S0567740869002457.CrossRefGoogle Scholar
  37. 37.
    Höflich BLW, Wentzel M, Ortner HM, Weinbruch S, Skogstad A, Hetland S, et al. Chemical composition of individual aerosol particles from working areas in a nickel refinery. J Environ Monit. 2000;2(3):213–7.  https://doi.org/10.1039/B001146K.CrossRefGoogle Scholar
  38. 38.
    Fan J, Chu PK. General properties of bulk SiC. Silicon carbide nanostructures: fabrication, structure, and properties. Cham: Springer International Publishing; 2014. p. 7–114.Google Scholar
  39. 39.
    Weimer AW. Carbide, nitride and boride materials synthesis and processing: Chapman & Hall; 1997.Google Scholar
  40. 40.
    Post JE. Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci. 1999;96(7):3447–54.  https://doi.org/10.1073/pnas.96.7.3447.CrossRefGoogle Scholar
  41. 41.
    Baron V, Gutzmer J, Rundlof H, Tellgren R. The influence of iron substitution on the magnetic properties of hausmannite, Mn2+(Fe,Mn)2 (3+)O4. Am Mineral. 1998;83(7–8):786–93.CrossRefGoogle Scholar
  42. 42.
    Chen GS, Boothroyd CB, Humphreys CJ. Novel fabrication method for nanometer-scale silicon dots and wires. Appl Phys Lett. 1993;62(16):1949–51.  https://doi.org/10.1063/1.109500.CrossRefGoogle Scholar
  43. 43.
    X-w D, Takeguchi M, Tanaka M, Furuya K. Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl Phys Lett. 2003;82(7):1108–10.  https://doi.org/10.1063/1.1555691.CrossRefGoogle Scholar
  44. 44.
    IARC. Monographs on the evaluation of carciogenic risks to humans: some nanomaterials and some fibres. Lyon: International Agency for Research and Cancer (WHO); 2017.Google Scholar
  45. 45.
    Goldstein JI, Newbury DE, Michael JR, NWM R, JHJ S, Joy DC. Scanning electron microscopy and X-ray microanalysis. New York: Springer; 2017.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Torunn Kringlen Ervik
    • 1
  • Nathalie Benker
    • 2
  • Stephan Weinbruch
    • 1
    • 2
  • Asbjørn Skogstad
    • 1
  • Yngvar Thomassen
    • 1
  • Dag G. Ellingsen
    • 1
  • Balázs Berlinger
    • 1
  1. 1.Department of Chemical and Biological Work EnvironmentNational Institute of Occupational HealthOsloNorway
  2. 2.Institute of Applied GeosciencesTechnical University DarmstadtDarmstadtGermany

Personalised recommendations