Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 15, pp 3547–3557 | Cite as

Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves

  • Elixabet Díaz-de-Cerio
  • David Arráez-Román
  • Antonio Segura-Carretero
  • Pasquale Ferranti
  • Rosario Nicoletti
  • Giuseppe Mirko Perrotta
  • Ana María Gómez-Caravaca
Research Paper
Part of the following topical collections:
  1. Discovery of Bioactive Compounds

Abstract

Myrtus communis L. (myrtle) is native to the Mediterranean region and Western Asia. Its leaves have demonstrated its potential effect towards different bioactivities like anti-diabetic, anti-diarrheic, anti-ulcer, anti-cancer, among others. These activities have been associated with its phenolic content. In this sense, the aim of this work has been to develop a new pressurized-liquid extraction procedure (PLE), by using a response surface methodology (RSM), to evaluate the phenolic composition from myrtle leaves by HPLC-DAD-TOF-MS. Previously, different solvents such as methanol, ethanol, and acetone/water mixtures were tested by using ultrasound-assisted extraction (UAE) in order to select the most suitable one. Subsequently, a Box-Behnken design (BBD) was performed according to the effect of ethanol/water ratio (50, 75, and 100% (v/v)), temperature (50, 125, and 200 °C), and extraction time (5, 18, and 30 min). The optimal conditions achieved with the established method were 71% ethanol/water, 137 °C, and 19 min. The analysis of the obtained extracts by HPLC-DAD-TOF-MS allowed the characterization of 15 new compounds in myrtle leaves. Finally, high amounts of gallic and ellagic acid were found in the optimized PLE extracts (3.31 ± 0.03 and 3.88 ± 0.09 mg/g leaf dry weight (d.w.), respectively), and PLE reported greater recovery of total phenolic compounds than UAE (30 ± 1 and 22.4 ± 0.6 mg/g leaf d.w., respectively).

Keywords

Myrtus communis L. Ultrasound-assisted extraction Pressurized liquid extraction Response surface methodology HPLC-DAD-TOF-MS Phenolic compounds 

Notes

Acknowledgements

This work was funded by projects AGL2015-67995-C3-2-R (Spanish Ministry of Science and Innovation), as well as by project P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent was not applicable.

Supplementary material

216_2018_914_MOESM1_ESM.pdf (448 kb)
ESM 1 (PDF 448 kb)

References

  1. 1.
    Gençler Özkan AM, Gençler GÇ. A Mediterranean: Myrtus communis L. (Myrtle). In: Morel J-P, Mercuri AM, editors. Plants and culture: seeds of the cultural heritage of Europe. Bari: Edipuglia srl; 2009. p. 159–68.Google Scholar
  2. 2.
    Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents, 2014. Phyther Res. 1136:1125–36.Google Scholar
  3. 3.
    Mekonnen S, Tigist G. Myrtus communis Linn: a review on ethnobotanical, ethnopharmacological and phytochemical studies. J Pharmacogn Phyther. 2017;9(6):77–86.CrossRefGoogle Scholar
  4. 4.
    Amensour M, Sendra E, Abrini J, Bouhdid S, Pérez-Alvarez JA, Fernández-López J. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat Prod Commun. 2009;4(6):819–24.PubMedGoogle Scholar
  5. 5.
    Díaz-de-Cerio E, Tylewicz U, Verardo V, Fernández-Gutiérrez A, Segura-Carretero A, Romani S. Design of sonotrode ultrasound-assisted extraction of phenolic compounds from Psidium guajava L. leaves. Food Anal Methods. 2017;10:2781–91.CrossRefGoogle Scholar
  6. 6.
    Heng MY, Tan SN, Yong JWH, Ong ES. Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal Chem. 2013;50:1–10.CrossRefGoogle Scholar
  7. 7.
    Taamalli A, Iswaldi I, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A, Zarrouk M. UPLC-QTOF/MS for a rapid characterisation of phenolic compounds from leaves of Myrtus communis L. Phytochem Anal. 2014;25(1):89–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Romani A, Pinelli P, Mulinacci N, Vincieri FF, Tattini M. Identification and quantitation of polyphenols in leaves of Myrtus communis L. Chromatographia. 1999;49(1–2):17–20.CrossRefGoogle Scholar
  9. 9.
    Pereira P, Bernardo-Gil MG, Cebola MJ, Mauricio E, Romano A. Supercritical fluid extracts with antioxidant and antimicrobial activities from myrtle (Myrtus communis L.) leaves. Response surface optimization. J Supercrit Fluids. 2013;83:57–64.CrossRefGoogle Scholar
  10. 10.
    Dahmoune F, Nayak B, Moussi K, Remini H, Madani K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015;166:585–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodríguez-Pérez C, Gilbert-López B, Mendiola JA, Quirantes-Piné R, Segura-Carretero A, Ibáñez E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis. 2016:1938–46.Google Scholar
  12. 12.
    Barros F, Dykes L, Awika JM, Rooney LW. Accelerated solvent extraction of phenolic compounds from sorghum brans. J Cereal Sci. 2013;58(2):305–12.CrossRefGoogle Scholar
  13. 13.
    Gomes SVF, Portugal LA, dos Anjos JP, de Jesus ON, de Oliveira EJ, David JP, et al. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem J. 2017;132:28–35.CrossRefGoogle Scholar
  14. 14.
    Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 2011;126(1):339–46.CrossRefGoogle Scholar
  15. 15.
    Sarker SD, Nahar L. Hyphenated techniques and their applications in natural products analysis. In: Natural products isolation Methods and protocols. 2009. p. 75–88.Google Scholar
  16. 16.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta. 2011 Oct 3;703(1):8–18.CrossRefPubMedGoogle Scholar
  18. 18.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. Vol. 6th Ed, Prentice Hall. 2010.Google Scholar
  19. 19.
    Bruker Daltonics Technical Note #008. Molecular formula determination under automation.Google Scholar
  20. 20.
    Fatiha B, Khodir M, Farid D, Tiziri R, Karima B, Sonia O, et al. Optimisation of solvent extraction of antioxidants (phenolic compounds) from Algerian mint (Mentha spicata L.). Pharmacogn Commun. 2012;2(4):72–86.Google Scholar
  21. 21.
    Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51(10):2866–87.CrossRefPubMedGoogle Scholar
  22. 22.
    Vihakas M. Flavonoids and other phenolic compounds: characterization and interactions with lepidopteran and sawfly larvae. Turun Yliopiston Julkaisuja – Annales Universitatis Turkuensis, 2014.Google Scholar
  23. 23.
    Tanaka T, Tong H-H, Xu Y-M, Ishimaru K, Nonaka G, Nishioka I. Tannins and related compounds. CXVII. Isolation and characterization of three new ellagitannins, Lagerstannins A, B and C, having a gluconic acid core, from Lagerstroemia speciosa (L.) Pers. Chem Pharm Bull (Tokyo). 1992;40(11):2975–80.CrossRefGoogle Scholar
  24. 24.
    Gallo MBC, Rocha WC, da Cunha US, Diogo FA, da Silva FC, Vieira PC, et al. Bioactivity of extracts and isolated compounds from Vitex polygama (Verbenaceae) and Siphoneugena densiflora (Myrtaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Pest Manag Sci. 2006;62:1072–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka T, Orii Y, Nonaka G, Nishioka I. Tannins and related compounds. CXXIII. Chromone, acetophenone and phenylpropanoid glycosides and their galloyl and/or hexahydroxydiphenoyl esters from the leaves of Syzygium aromaticum Merr. et Perry. Chem Pharm Bull (Tokyo). 1993;41(7):1232–7.CrossRefGoogle Scholar
  26. 26.
    Amaral ACF, Kuster RM, De Santana BW, Barnes RA, Kaplan MAC, Wessjohann LA. Flavonoids and other phenolics from leaves of two Marlierea species (Myrtaceae). Biochem Syst Ecol. 2001;29(6):653–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang L, Yin P, Fan H, Xue Q, Li K, Li X, et al. Response surface methodology optimization of ultrasonic-assisted extraction of Acer truncatum leaves for maximal phenolic yield and antioxidant activity. Molecules. 2017;22:232.CrossRefGoogle Scholar
  28. 28.
    Khanh PN, Duc HV, Huong TT, Son NT, Ha VT, Van DT, et al. Alkylphloroglucinol derivatives and triterpenoids with soluble epoxide hydrolase inhibitory activity from Callistemon citrinus. Fitoterapia. 2016;109:39–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Djoukeng JD, Abou-Mansour E, Tapondjou LA, Lontsi D, Tabacchi R. Identification of ellagic acid derivatives from stem bark of Syzygium guineense (Myrtaceae). Nat Prod Commun. 2007;2:1–6.Google Scholar
  30. 30.
    Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné R, Švarc-Gajić J, Segura-Carretero A. The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods. 2014;10:192–200.CrossRefGoogle Scholar
  31. 31.
    Fadda A, Palma A, D’Aquino S, Mulas M. Effects of myrtle (Myrtus communis L.) fruit cold storage under modified atmosphere on liqueur quality. J Food Process Preserv. 2017;41:e12776.CrossRefGoogle Scholar
  32. 32.
    Abu-Reidah IM, Arráez-Román D, Warad I, Fernández-Gutiérrez A, Segura-Carretero A. UHPLC/MS2-based approach for the comprehensive metabolite profiling of bean (Vicia faba L.) by-products: a promising source of bioactive constituents. Food Res Int. 2017;93:87–96.CrossRefPubMedGoogle Scholar
  33. 33.
    Müller K, Gawlik I, Wiegrebe W. Acidity and stability of 10-substituted 1,8-dihydroxy-9(10H)-anthracenones. Arch Pharm. 1995;328(4):359–62.CrossRefGoogle Scholar
  34. 34.
    Jamil DAK. Preliminary phytochemical and screening of biocomponents by GC-MS technique in Myrtus communis L. plant flowers. AL-Qadisiyha J Pure Sci. 2016;1(21):23–33.Google Scholar
  35. 35.
    Hu YM, Su GH, Sze SC-W, Ye W, Tong Y. Quality assessment of Cortex Phellodendri by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Biomed Chromatogr. 2010;24(4):438–53.PubMedGoogle Scholar
  36. 36.
    Sugiyama M, Kikuchi M. Phenylethanoid glycosides from Osmanthus asiaticus. Phytochemistry. 1993;32(6):1553–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Varughese T, Rahaman M, Kim N, Cho S, Moon S. Gamnamoside, a phenylpropanoid glycoside from persimmon leaves (Diospyros kaki) with an inhibitory effect against an alcohol metabolizing enzyme. Bull Kor Chem Soc. 2009;30(5):1–4.Google Scholar
  38. 38.
    Seo J, Lee S, Elam ML, Johnson SA, Kang J, Arjmandi BH. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci Nutr. 2014;2(2):174–80.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind Crop Prod. 2015;66:246–54.CrossRefGoogle Scholar
  40. 40.
    Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen RW. Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry. 2010;71(10):1132–48.CrossRefPubMedGoogle Scholar
  41. 41.
    Santos DT, Veggi PC, Meireles MAA. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng. 2012;108(3):444–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elixabet Díaz-de-Cerio
    • 1
    • 2
  • David Arráez-Román
    • 1
    • 2
  • Antonio Segura-Carretero
    • 1
    • 2
  • Pasquale Ferranti
    • 3
  • Rosario Nicoletti
    • 3
    • 4
  • Giuseppe Mirko Perrotta
    • 3
  • Ana María Gómez-Caravaca
    • 1
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Research and Development Functional Food CentreHealth Science Technological ParkGranadaSpain
  3. 3.Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
  4. 4.Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia AgrariaRomeItaly

Personalised recommendations