Advanced analytical strategies for measuring free bioactive milk sugars: from composition and concentrations to human metabolic response

Review
Part of the following topical collections:
  1. Discovery of Bioactive Compounds

Abstract

Our daily food intake provides the nutrients to maintain health. However, in addition to the nutritional values, food can promote health and be beneficial in preventing diseases. Human milk is a unique food source that contains essential nutrients in the right balance and other bioactive factors that make it the ideal food for all healthy term infants. Human milk oligosaccharides (HMOs) play an important role in health, at several levels: acting as prebiotics promoting the growth of beneficial bacterial strains, preventing the growth of pathogenic bacteria in the intestine, and modulating the immune response against bacterial infections. However, despite their biological relevance and the advances made in the analytical field, very few studies have been carried out to better understand HMOs bioactivity mechanisms or to examine human metabolic response to dietary supplementation. This review describes the state-of-the-art of glycomics strategies, recent analytical methods, and future trends for the identification and discovery of bioactive sugars, the known mechanisms of action, and discusses findings of some recent human intervention trials.

Keywords

Glycomics Human milk oligosaccharides Mass spectrometry Ion mobility Nutrition 

Notes

Acknowledgements

Josep Rubert thanks the Joint Action Biomarkers in Nutrition and Health, Project Food Biomarkers Alliance (FoodBall) of the Joint Programming Initiative a Healthy Diet for a Healthy Life (JPI HDHL) and the respective national funding organization, Ministry of Education, University and Research (MIUR).

Compliance with ethical standards

Conflict of interest

None

Supplementary material

216_2018_913_MOESM1_ESM.pdf (132 kb)
ESM 1 (PDF 132 kb)

References

  1. 1.
    Huerou-Luron IL, Blat S, Boudry G. Breast - V. Formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 2010;23:23–36.CrossRefGoogle Scholar
  2. 2.
    Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.CrossRefGoogle Scholar
  3. 3.
    Grabarics M, Csernák O, Balogh R, Béni S. Analytical characterization of human milk oligosaccharides – potential applications in pharmaceutical analysis. J Pharm Biomed Anal. 2017;146:168–78.CrossRefGoogle Scholar
  4. 4.
    Balogh R, Szarka S, Béni S. Determination and quantification of 2’-O-fucosyllactose and 3-O-fucosyllactose in human milk by GC-MS as O-trimethylsilyl-oxime derivatives. J Pharm Biomed Anal. 2015a;115:450–6.CrossRefGoogle Scholar
  5. 5.
    Leo F, Asakuma S, Nakamura T, Fukuda K, Senda A, Urashima T. Improved determination of milk oligosaccharides using a single derivatization with anthranilic acid and separation by reversed-phase high-performance liquid chromatography. J Chromatogr A. 2009;1216:1520–3.CrossRefGoogle Scholar
  6. 6.
    Fong B, McJarrow KP. Quantification of bovine milk oligosaccharides using liquid chromatography-selected reaction monitoring-mass spectrometry. J Agric Food Chem. 2011;59:9788–95.CrossRefGoogle Scholar
  7. 7.
    Galeotti F, Coppa GV, Zampini L, MacCari F, Galeazzi T, Padella L, et al. On-line high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry profiling of human milk oligosaccharides derivatized with 2-aminoacridone. Anal Biochem. 2012;430:97–104.CrossRefGoogle Scholar
  8. 8.
    Xu G, Davis JCC, Goonatilleke E, Smilowitz JT, German JB, Lebrilla CB. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J Nutr. 2017;1:1–8.Google Scholar
  9. 9.
    Mariño K, Lane JA, Abrahams JL, Struwe WB, Harvey DJ, Marotta M, et al. Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology. 2011;21:1317–30.CrossRefGoogle Scholar
  10. 10.
    Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Ficcadenti A, Padella L, et al. Oligosaccharides in four different milk groups, bifidobacteria, and ruminococcus obeum. J Pediatr Gastroenterol Nutr. 2011;53:80–7.CrossRefGoogle Scholar
  11. 11.
    West C, Elfakir C, Lafosse M. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A. 2010;1217:3201–16.CrossRefGoogle Scholar
  12. 12.
    Balogh R, Jankovics P, Béni S. Qualitative and quantitative analysis of N-acetyllactosamine and lacto-N-biose, the two major building blocks of human milk oligosaccharides in human milk samples by high-performance liquid chromatography-tandem mass spectrometry using a porous graphitic. J Chromatogr A. 2015b;1422:140–6.CrossRefGoogle Scholar
  13. 13.
    Oursel S, Cholet S, Junot C, Fenaille F. Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr B. 2017;  https://doi.org/10.1016/j.jchromb.2017.03.028.
  14. 14.
    Albrecht S, Schols HA, Van Den Heuvel EGHM, Voragen AGJ, Gruppen H. CE-LIF-MSn profiling of oligosaccharides in human milk and feces of breast-fed babies. Electrophoresis. 2010;31:1264–73.CrossRefGoogle Scholar
  15. 15.
    Righetti L, Paglia G, Galaverna G, Dall’Asta C. Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins. 2016;8:361.CrossRefGoogle Scholar
  16. 16.
    Berendsen BJ, Meijer T, Mol HG, van Ginkel L, Nielen MWF. A global inter-laboratory study to assess acquisition modes for multi-compound confirmatory analysis of veterinary drugs using liquid chromatography coupled to triple quadrupole, time of flight and Orbitrap mass spectrometry. Anal Chim Acta. 2017;962:60–72.CrossRefGoogle Scholar
  17. 17.
    Lotti C, Rubert J, Fava F, Tuohy K, Mattivi F, Vrhovsek U. Development of a fast and cost-effective gas chromatography-mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Anal Bioanal Chem. 2017;409:5555–67.CrossRefGoogle Scholar
  18. 18.
    Marcos J, Renau N, Valverde O, Aznar-Laín G, Gracia-Rubio I, Gonzalez-Sepulveda M, et al. Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2016;1434:91–101.CrossRefGoogle Scholar
  19. 19.
    Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official J. Eur Commun L221 (2002), pp. 8–36Google Scholar
  20. 20.
    SANTE/11813/2017. Implemented by 01.01.2018. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. European Commission, Brussels (2017) Available at: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf
  21. 21.
    Food and Drug Administration. Final Guidance for Industry: Mass Spectrometry for Confirmation of the Identity of Animal Drug Residues Division of Residue Chemistry, Office of Research, Center for Veterinary Medicine, Rockville, MD (2003)Google Scholar
  22. 22.
    SANTE/11945/2015. 30 November–1 December 2015, Rev. 0, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. European Commission, Brussels (2015) Available at: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_11945.pdf
  23. 23.
    European Commission Health and Consumer Protection. Health and Consumer Protection Directorate, SANCO/12571/2013 Guidance Document on analytical quality control and validation procedures for pesticide residues analysis in food and feed.Google Scholar
  24. 24.
    Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75:920–33.CrossRefGoogle Scholar
  25. 25.
    Totten SM, Wu LD, Parker EA, Davis JCC, Hua S, Stroble C, et al. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Anal Bioanal Chem. 2014;406:7925–35.CrossRefGoogle Scholar
  26. 26.
    Lee H, Cuthbertson DJ, Otter DE, Barile D. Rapid screening of bovine milk oligosaccharides in a whey permeate product and domestic animal milks by accurate mass database and tandem mass spectral library. J Agric Food Chem. 2016;64:6364–74.CrossRefGoogle Scholar
  27. 27.
    Wu S, Grimm R, German JC, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011;10:856–68.CrossRefGoogle Scholar
  28. 28.
    Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev. 2014;43:2757–83.CrossRefGoogle Scholar
  29. 29.
    Ko BJ, Brodbelt JS. 193 nm Ultraviolet photodissociation of deprotonated sialylated oligosaccharides. Anal Chem. 2011;83:8192–200.CrossRefGoogle Scholar
  30. 30.
    Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: Current instrumentation. Analyst. 2015;140:1376–90.CrossRefGoogle Scholar
  31. 31.
    Hofmann J, Hahm HS, Seeberger PH, Pagel K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature. 2015;526:241–4.CrossRefGoogle Scholar
  32. 32.
    Hofmann J, Pagel K. Glycan analysis by ion mobility-mass spectrometry. Angew Chem. 2017;56:8342–9.CrossRefGoogle Scholar
  33. 33.
    Fenna LS, McLean JA. Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem, Chem Phys. 2011;13:2196–205.CrossRefGoogle Scholar
  34. 34.
    Huang Y, Dodds ED. Ion mobility studies of carbohydrates as Group I adducts: isomer specific collisional cross-section dependence on metal ion radius. Anal Chem. 2013;85:9728–35. Analyst, 2015. 140,6912–6921CrossRefGoogle Scholar
  35. 35.
    Huang Y, Dodds ED. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst. 2015;140:6912–21.CrossRefGoogle Scholar
  36. 36.
    Pu Y, Ridgeway ME, Glaskin RS, Park MA, Costello CE, Lin C. Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal Chem. 2016;88:3440–3.CrossRefGoogle Scholar
  37. 37.
    Reading E, Munoz-Muriedas J, Roberts AD, Dear GJ, Robinson CV, Beaumont C. Elucidation of drug metabolite structural isomers using molecular modeling coupled with ion mobility mass spectrometry. Anal Chem. 2016;88:2273–80.CrossRefGoogle Scholar
  38. 38.
    Shvartsburg AA, Siu KWM, Clemmer DEJ. Prediction of peptide ion mobilities via a priori calculations from intrinsic size parameters of amino acid residues. Am Soc Mass Spectrom. 2001;12:885–8.CrossRefGoogle Scholar
  39. 39.
    D'Atri V, Porrini M, Rosu F, Gabelica V. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. J Mass Spectrom. 2015;50:711–26.Google Scholar
  40. 40.
    Poyer S, Loutelier-Bourhis C, Coadou G, Mondeguer F, Enche J, Bossée A, et al. Identification and separation of saxitoxins using hydrophilic interaction liquid chromatography coupled to traveling wave ion mobility-mass spectrometry. J Mass Spectrom. 2015;50:175–81.CrossRefGoogle Scholar
  41. 41.
    Struwe WB, Baldauf C, Hofmann J, Rudd PM, Pagel K. Ion mobility separation of deprotonated oligosaccharide isomers – evidence for gas-phase charge migration. Chem Commun. 2016;52:12353–6.CrossRefGoogle Scholar
  42. 42.
    Garrido D, Dallas DC, Mills DA. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology. 2013;159(4):649–64.CrossRefGoogle Scholar
  43. 43.
    Asakuma A, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Bio Chem. 2011;286(40):34583–92.CrossRefGoogle Scholar
  44. 44.
    Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations formilk utilization within the infant microbiome. PNAS. 2008;105:18964–9.CrossRefGoogle Scholar
  45. 45.
    Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr. 2012;3:415–21.CrossRefGoogle Scholar
  46. 46.
    Jost T, Lacorix C, Braegger C, Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 2015;73(7):426–37.CrossRefGoogle Scholar
  47. 47.
    Hoeflinger JL, Davis SR, Chow JM, Miller MJ. In vitro impact of human milk oligosaccharides on enterobacteriaceae growth. J Agr Food Chem. 2015;63:3295–302.CrossRefGoogle Scholar
  48. 48.
    Schwab C, Gänzle M. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides, and galacto-oligosaccharides. FEMS Microb Let. 2011;315(2):141–8.CrossRefGoogle Scholar
  49. 49.
    Yu Z-T, CHen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23(111):1281–92.CrossRefGoogle Scholar
  50. 50.
    Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci. 2017;100(10):7825–33.CrossRefGoogle Scholar
  51. 51.
    Moon JS, Joo W, Choi HS, Han NS. In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J Funct Foods. 2016;21:497–506.CrossRefGoogle Scholar
  52. 52.
    Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015;60(6):825–33.CrossRefGoogle Scholar
  53. 53.
    De Leoz MLA, Kalanetre KM, Bokulich NA, Strum JS, Underwood MA, German JB, et al. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Proteome Res. 2015;14(1):491–502.CrossRefGoogle Scholar
  54. 54.
    Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyl transferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3(1):13.CrossRefGoogle Scholar
  55. 55.
    Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–71.CrossRefGoogle Scholar
  56. 56.
    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fucalpha 1, 2Galbeta 1, 4GlcNAc), and fucosyl oligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.CrossRefGoogle Scholar
  57. 57.
    Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr. 2004;145:297–303.CrossRefGoogle Scholar
  58. 58.
    Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.CrossRefGoogle Scholar
  59. 59.
    Manthey CF, Autran CA, Eckmann L, Bode L. Human milk oligosaccharides protect against enteropathogenic Escherichia coli attachment in vitro and EPEC colonization in suckling mice. J Pediatr Gastroenterol Nutr. 2014;58(2):165–8.CrossRefGoogle Scholar
  60. 60.
    Cilieborg MS, Bering SB, Ostergaard MV, Jensen ML, Krych L, Newburg DS, et al. Minimal short-term effect of dietary 2'-fucosyllactose on bacterial colonisation, intestinal function and necrotizing enterocolitis in preterm pigs. Brit J Nutr. 2016;116(5):834–41.CrossRefGoogle Scholar
  61. 61.
    Hester SN, Chen X, Li M, Monaco MH, Comstock SS, Kuhlenschmidt MS, et al. Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Brit J Nutr. 2013;110:1233–42.CrossRefGoogle Scholar
  62. 62.
    Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells. J Nutr. 2015;145:1992–8.CrossRefGoogle Scholar
  63. 63.
    Weichert S, Jennewein S, Hüfner E, Weiss C, Borkowski J, Putze J, et al. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res. 2013;33:831–8.CrossRefGoogle Scholar
  64. 64.
    Jantscher-Krenn E, Lauwaet T, Bliss LA, Reed SL, Gillin FD, Bode L. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Brit J Nutr. 2012;108(10):1839–46.CrossRefGoogle Scholar
  65. 65.
    Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB, Spence EC, Patel AL, Hou J, Lewis NE, Bode L (2017) Gut published online first: 05 April 2017. doi:  https://doi.org/10.1136/gutjnl-2016-312819.
  66. 66.
    Newburg DS, He Y. Neonatal gut microbiota and human milk glycans cooperate to attenuate infection and inflammation. Clin Obstetr Gynecol. 2015;58(4):814–26.CrossRefGoogle Scholar
  67. 67.
    Kulinich A, Liu L. Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carbohydr Res. 2016;432:62–70.CrossRefGoogle Scholar
  68. 68.
    Comstock SS, Donovan SM. Human milk oligosaccharides as modulators of intestinal and systemic immunity. In: prebiotics and probiotics in human milk: origins and functions of milk-borne oligosaccharides and bacteria. Ann Nutr Metab. 2016;69(Suppl 2):42–51.Google Scholar
  69. 69.
    Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1147–68.CrossRefGoogle Scholar
  70. 70.
    El-Hawiet A, Chen Y, Shams-Ud-Doha K, Kitova EN, Kitov PI, Bode L, Hage N, Falcone FH, Klassen JS, (2017) Screening natural libraries of human milk oligosaccharides against lectins using CaR-ESI-MS. Analyst published online first: 27 November 2017. doi:  https://doi.org/10.1039/C7AN01397C
  71. 71.
    Wallach TE, Bayrer JR. Intestinal organoids: new frontiers in the study of intestinal disease and physiology. J Pediatr Gastroenterol Nutr. 2017;64(2):180–5.CrossRefGoogle Scholar
  72. 72.
    Rasmussen SO, Martin L, Ostergaard MV, Rudloff S, Roggenbuck M, Nguyen DN, et al. Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs. J Nutr Biochem. 2017;40:141–54.CrossRefGoogle Scholar
  73. 73.
    Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, Buck RH. Similar to those who are breastfed, infants fed a formula containing 2-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J Nutr. 2016;146(12):2559–66.CrossRefGoogle Scholar
  74. 74.
    He Y, Liu SB, Kling DE, Leone S, Lawlor NT, Huang Y, et al. The human milk oligosaccharide 20-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut. 2016;65:33–46.CrossRefGoogle Scholar
  75. 75.
    Newburg DS, Tanritanir AC, Chakrabarti S. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release. J Thromb Thrombol. 2016;42:46–55.CrossRefGoogle Scholar
  76. 76.
    Cormstock SS, Wang M, Hester SN, Li M, Donovan SM. Select human milk oligosaccharides directly modulate peripheral blood mononuclear cells isolated from 10-d-old pigs. Brit J Nutr. 2014;111:819–28.CrossRefGoogle Scholar
  77. 77.
    Holschner HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr. 2014;144(5):586–91.CrossRefGoogle Scholar
  78. 78.
    Lane JA, O’Callaghan J, Carrington SD, Hickey RM. Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Brit J Nut. 2013;110:2127–37.CrossRefGoogle Scholar
  79. 79.
    Hester SN, Donovan SM. Individual and combined effects of nucleotides and human milk oligosaccharides on proliferation, apoptosis, and necrosis in a human fetal intestinal cell line. Food Nutr Sci. 2012;3:1567–76.CrossRefGoogle Scholar
  80. 80.
    Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allerg Immunol. 2010;21:1179–88.CrossRefGoogle Scholar
  81. 81.
    Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy. 2015;70(9):1091–102.CrossRefGoogle Scholar
  82. 82.
    Li M, Monaco MH, Wang M, Comstock SS, Kuhlenschmidt TB, Fahey GC Jr, et al. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 2014;8:1609–20.CrossRefGoogle Scholar
  83. 83.
    Mugambi MN, Musekiwa A, Lombard M, Young T, Blaauw R. Synbiotics, probiotics, or prebiotics in infant formula for full term infants: a systematic review. Nutr J. 2012;11:81.CrossRefGoogle Scholar
  84. 84.
    Marriage BJ, Buck RH, Goehring KC, Oliver JS, Williams JA. Infants fed a lower calorie formula with 2'fl show growth and 2'fl uptake like breast-fed infants. J Pediatr Gastroenterol Nutr. 2015;61:649–58.CrossRefGoogle Scholar
  85. 85.
    Simeoni U, Berger B, Junick J, Blaut M, Pecquet S, Rezzonico E, et al. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis Subsp. lactis Cncm I-3446. Environ Microbiol. 2016;18:2185–95.CrossRefGoogle Scholar
  86. 86.
    Puccio G, Alliet P, Cajozzo C, Janssens E, Corsello G, Sprenger N, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017;64:624–31.CrossRefGoogle Scholar
  87. 87.
    Elison E, Vigsnaes LK, Rindom Krogsgaard L, Rasmussen J, Sorensen N, McConnell B, et al. Oral supplementation of healthy adults with 2'-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016;116:1356–68.CrossRefGoogle Scholar
  88. 88.
    Smilowitz JT, Lemay DG, Kalanetra KM, Chin EL, Zivkovic AM, Breck MA, et al. Tolerability and safety of the intake of bovine milk oligosaccharides extracted from cheese whey in healthy human adults. J Nutr Sci. 2017;6:e6.CrossRefGoogle Scholar
  89. 89.
    Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014;9:e101692.CrossRefGoogle Scholar
  90. 90.
    Ruhaak LR, Stroble C, Underwood MA, Lebrilla CB. Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem. 2014;406:5775–84.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aifric O’Sullivan
    • 1
  • Jaime Salcedo
    • 2
    • 3
  • Josep Rubert
    • 4
  1. 1.UCD Institute for Food and HealthUniversity College DublinDublin 4Ireland
  2. 2.Department of Food Science & TechnologyUniversity of California-DavisDavisUSA
  3. 3.Chemistry Product DevelopmentWaters Technologies Ireland Ltd.DrinaghIreland
  4. 4.Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly

Personalised recommendations