Skip to main content
Log in

Sensitive analysis of N-blocked amino acids using high-performance liquid chromatography with paired ion electrospray ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a paired ion electrospray ionization (PIESI) mass spectrometry method was developed for sensitive detection of 9-fluorenylmethyl chloroformate (Fmoc)-derivatized amino acids. The structure-optimized ion-pairing reagent was introduced post column to form positively charged complexes which can be detected in the positive ion mode. These complexes are more surface-active than the original analytes, and meanwhile, the intensity of sodium adducts was significantly reduced. The limit of detection of the amino acids obtained with the optimal ion-pairing reagent was 0.5 to 20 pg which was 5–100 times lower than the negative mode. In addition, two mass spectrometry platforms—linear ion trap and triple quadrupole—were used to compare the PIESI improvements. Eventually, the method was applied to successfully detect the level of amino acids in human urine samples with high accuracy and the added benefit of minimizing matrix effects.

A HPLC-ESI-MS/MS method by using ion-pairing reagents for sensitive detection of Fmoc amino acids

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berg JM, Tymoczko JL, Stryer L. Biochemistry. New York: W H Freeman; 2002.

    Google Scholar 

  2. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.

    Article  CAS  PubMed  Google Scholar 

  3. Poncet N, Taylor PM. The role of amino acid transporters in nutrition. Curr Opin Clin Nutr Metab Care. 2013;16:57–65.

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz JH. Neurotransmitters A2. In: Ramachandran VS, editor. Encyclopedia of the human brain. New York: Academic; 2002. p. 601–11.

    Chapter  Google Scholar 

  5. Armstrong DW, Gasper M, Lee SH, Zukowski J, Ercal N. D-amino acid levels in human physiological fluids. Chirality. 1993;5:375–8.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong DW, Duncan JD, Lee SH. Evaluation of D-amino acid levels in human urine and in commercial L-amino acid samples. Amino Acids. 1991;1:97–106.

    Article  CAS  PubMed  Google Scholar 

  7. Brückner H, Haasmann S, Friedrich A. Quantification of D-amino acids in human urine using GC-MS and HPLC. Amino Acids. 1994;6:205–11.

    Article  PubMed  Google Scholar 

  8. Armstrong DW, Zukowski J, Ercal N, Gasper M. Stereochemistry of pipecolic acid found in the urine and plasma of subjects with peroxisomal deficiencies. J Pharm Biomed Anal. 1993;11:881–6.

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong DW, Gasper MP, Lee SH, Ercal N, Zukowski J. Factors controlling the level and determination of D-amino acids in the urine and plasma of laboratory rodents. Amino Acids. 1993;5:299–315.

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong DW, Rundlett KL, Chen J-R. Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality. 1994;6:496–509.

    Article  CAS  PubMed  Google Scholar 

  11. Desai MJ, Armstrong DW. Analysis of native amino acid and peptide enantiomers by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. J Mass Spectrom. 2004;39:177–87.

    Article  CAS  PubMed  Google Scholar 

  12. Molnár-Perl I. Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately. J Chromatogr A. 2003;987:291–309.

    Article  PubMed  Google Scholar 

  13. Desai MJ, Armstrong DW. Analysis of derivatized and underivatized theanine enantiomers by high-performance liquid chromatography/atmospheric pressure ionization-mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:251–6.

    Article  CAS  PubMed  Google Scholar 

  14. Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. D-amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS Chem Neurosci. 2017;8:1251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Einarsson S, Josefsson B, Lagerkvist S. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr A. 1983;282:609–18.

    Article  CAS  Google Scholar 

  16. Lindroth P, Mopper K. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem. 1979;51:1667–74.

    Article  CAS  Google Scholar 

  17. Graser TA, Godel HG, Albers S, Földi P, Fürst P. An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Anal Biochem. 1985;151:142–52.

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe Y, Imai K. Pre-column labelling for high-performance liquid chromatography of amino acids with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole and its application to protein hydrolysates. J Chromatogr A. 1982;239:723–32.

    Article  CAS  Google Scholar 

  19. Imai K, Watanabe Y. Fluorimetric determination of secondary amino acids by 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Chim Acta. 1981;130:377–83.

    Article  CAS  Google Scholar 

  20. Uutela P, Ketola RA, Piepponen P, Kostiainen R. Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry. Anal Chim Acta. 2009;633:223–31.

    Article  CAS  PubMed  Google Scholar 

  21. Bank RA, Jansen EJ, Beekman B, te Koppele JM. Amino acid analysis by reverse-phase high-performance liquid chromatography: improved derivatization and detection conditions with 9-fluorenylmethyl chloroformate. Anal Biochem. 1996;240:167–76.

    Article  CAS  PubMed  Google Scholar 

  22. Gartenmann K, Kochhar S. Short-chain peptide analysis by high-performance liquid chromatography coupled to electrospray ionization mass spectrometer after derivatization with 9-fluorenylmethyl chloroformate. J Agric Food Chem. 1999;47:5068–71.

    Article  CAS  PubMed  Google Scholar 

  23. Soukup-Hein RJ, Remsburg JW, Dasgupta PK, Armstrong DW. A general, positive ion mode ESI-MS approach for the analysis of singly charged inorganic and organic anions using a dicationic reagent. Anal Chem. 2007;79:7346–52.

    Article  CAS  PubMed  Google Scholar 

  24. Soukup-Hein RJ, Remsburg JW, Breitbach ZS, Sharma PS, Payagala T, Wanigasekara E, et al. Evaluating the use of tricationic reagents for the detection of doubly charged anions in the positive mode by ESI-MS. Anal Chem. 2008;80:2612–6.

    Article  CAS  PubMed  Google Scholar 

  25. Dodbiba E, Breitbach ZS, Wanigasekara E, Payagala T, Zhang X, Armstrong DW. Detection of nucleotides in positive-mode electrospray ionization mass spectrometry using multiply-charged cationic ion-pairing reagents. Anal Bioanal Chem. 2010;398:367–76.

    Article  CAS  PubMed  Google Scholar 

  26. Dodbiba E, Xu C, Payagala T, Wanigasekara E, Moon MH, Armstrong DW. Use of ion pairing reagents for sensitive detection and separation of phospholipids in the positive ion mode LC-ESI-MS. Analyst. 2011;136:1586–93.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Wanigasekara E, Breitbach ZS, Dodbiba E, Armstrong DW. Evaluation of tetracationic salts as gas-phase ion-pairing agents for the detection of trivalent anions in positive mode electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:1113–23.

    Article  CAS  PubMed  Google Scholar 

  28. Warnke MM, Breitbach ZS, Dodbiba E, Wanigasekara E, Zhang X, Sharma P, et al. The evaluation and comparison of trigonal and linear tricationic ion-pairing reagents for the detection of anions in positive mode ESI-MS. J Am Soc Mass Spectrom. 2009;20:529–38.

    Article  CAS  PubMed  Google Scholar 

  29. Breitbach ZS, Berthod A, Huang K, Armstrong DW. Mass spectrometric detection of trace anions: the evolution of paired-ion electrospray ionization (PIESI). Mass Spectrom Rev. 2016;35:201–18.

    Article  CAS  PubMed  Google Scholar 

  30. Breitbach ZS, Warnke MM, Wanigasekara E, Zhang X, Armstrong DW. Evaluation of flexible linear tricationic salts as gas-phase ion-pairing reagents for the detection of divalent anions in positive mode ESI-MS. Anal Chem. 2008;80:8828–34.

    Article  CAS  PubMed  Google Scholar 

  31. Guo H, Dolzan MD, Spudeit DA, Xu C, Breitbach ZS, Sreenivasan U, et al. Sensitive detection of anionic metabolites of drugs by positive ion mode HPLC-PIESI-MS. Int J Mass Spectrom. 2015;389:14–25.

    Article  CAS  Google Scholar 

  32. Guo H, Riter LS, Wujcik CE, Armstrong DW. Quantitative analysis of dicamba residues in raw agricultural commodities with the use of ion-pairing reagents in LC–ESI–MS/MS. Talanta. 2016;149:103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Breitbach ZS, Wanigasekara E, Dodbiba E, Schug KA, Armstrong DW. Mechanisms of ESI-MS selectivity and sensitivity enhancements when detecting anions in the positive mode using cationic pairing agents. Anal Chem. 2010;82:9066–73.

    Article  CAS  PubMed  Google Scholar 

  34. Xu C, Guo H, Breitbach ZS, Armstrong DW. Mechanism and sensitivity of anion detection using rationally designed unsymmetrical dications in paired ion electrospray ionization mass spectrometry. Anal Chem. 2014;86:2665–72.

    Article  CAS  PubMed  Google Scholar 

  35. Lopes NP, Stark CBW, Gates PJ, Staunton J. Fragmentation studies on monensin A by sequential electrospray mass spectrometry. Analyst. 2002;127:503–6.

    Article  CAS  PubMed  Google Scholar 

  36. Grimalt S, Pozo ÓJ, Marín JM, Sancho JV, Hernández F. Evaluation of different quantitative approaches for the determination of noneasily Ionizable molecules by different atmospheric pressure interfaces used in liquid chromatography tandem mass spectrometry: abamectin as case of study. J Am Soc Mass Spectrom. 2005;16:1619–30.

    Article  CAS  PubMed  Google Scholar 

  37. Guo H, Breitbach ZS, Armstrong DW. Reduced matrix effects for anionic compounds with paired ion electrospray ionization mass spectrometry. Anal Chim Acta. 2016;912:74–84.

    Article  CAS  PubMed  Google Scholar 

  38. Remsburg JW, Soukup-Hein RJ, Crank JA, Breitbach ZS, Payagala T, Armstrong DW. Evaluation of dicationic reagents for their use in detection of anions using positive ion mode ESI-MS via gas phase ion association. J Am Soc Mass Spectrom. 2008;19:261–9.

    Article  CAS  PubMed  Google Scholar 

  39. Xu C, Pinto EC, Armstrong DW. Separation and sensitive determination of sphingolipids at low femtomole level by using HPLC-PIESI-MS/MS. Analyst. 2014;139:4169–75.

    Article  CAS  PubMed  Google Scholar 

  40. Vatansever B, Lahrichi SL, Thiocone A, Salluce N, Mathieu M, Grouzmann E, et al. Comparison between a linear ion trap and a triple quadruple MS in the sensitive detection of large peptides at femtomole amounts on column. J Sep Sci. 2010;33:2478–88.

    Article  CAS  PubMed  Google Scholar 

  41. Macchi FD, Shen FJ, Keck RG, Harris RJ. Amino acid analysis, using postcolumn ninhydrin detection, in a biotechnology laboratory. In: Cooper C, Packer N, Williams K, editors. Amino acid analysis protocols. Totowa: Humana; 2000. p. 9–30.

    Chapter  Google Scholar 

  42. Glew RH, Melah G, El-Nafaty AI, Brandt Y, Morris D, VanderJagt DJ. Plasma and urinary free amino acid concentrations in preeclamptic women in Northern Nigeria. Clin Chim Acta. 2004;342:179–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Robert A. Welch Foundation (Y-0026) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Urine samples were collected at the University of Texas at Arlington and obtained with informed consent. This study was approved by the Institutional Review Board at University of Texas at Arlington, and the experiments were performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Du, S. & Armstrong, D.W. Sensitive analysis of N-blocked amino acids using high-performance liquid chromatography with paired ion electrospray ionization mass spectrometry. Anal Bioanal Chem 410, 4725–4735 (2018). https://doi.org/10.1007/s00216-018-0901-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0901-5

Keywords

Navigation