Skip to main content
Log in

Poly A tail length analysis of in vitro transcribed mRNA by LC-MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The 3′-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3′ end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3′ end can be locked in place by having a G or C after the poly nucleotide region.

Determination of mRNA poly A tail length using magnetic beads and LC-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, et al. PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA. 2015;21(8):1502–10.

    Article  CAS  Google Scholar 

  2. Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol. 2012;19(6):568–76.

    Article  CAS  Google Scholar 

  3. Moqtaderi Z, Geisberg JV, Struhl K. Secondary structures involving the poly(A) tail and other 3′ sequences are major determinants of mRNA isoform stability in yeast. Microb Cell. 2014;1(4):137–9.

    Article  CAS  Google Scholar 

  4. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature. 2014;508(7494):66–71.

    Article  CAS  Google Scholar 

  5. Ratcliffe CD, Sahgal P, Parachoniak CA, Ivaska J, Park M. Regulation of cell migration and beta1 integrin trafficking by the endosomal adaptor GGA3. Traffic. 2016;17(6):670–88.

    Article  CAS  Google Scholar 

  6. Beilharz TH, Preiss T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA. 2007;13(7):982–97.

    Article  CAS  Google Scholar 

  7. Peng J, Murray EL, Schoenberg DR. In vivo and in vitro analysis of poly(A) length effects on mRNA translation. Methods Mol Biol. 2008;419:215–30.

    Article  CAS  Google Scholar 

  8. Koski GK, Kariko K, Xu S, Weissman D, Cohen PA, Czerniecki BJ. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J Immunol. 2004;172(7):3989–93.

    Article  CAS  Google Scholar 

  9. Bernstein P, Peltz SW, Ross J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol Cell Biol. 1989;9(2):659–70.

    Article  CAS  Google Scholar 

  10. Bernstein P, Ross J. Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem Sci. 1989;14(9):373–7.

    Article  CAS  Google Scholar 

  11. Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell. 2014;53(6):1044–52.

    Article  CAS  Google Scholar 

  12. Janicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH. ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3' RACE applications. RNA. 2012;18(6):1289–95.

    Article  CAS  Google Scholar 

  13. Murray EL, Schoenberg DR. Assays for determining poly(A) tail length and the polarity of mRNA decay in mammalian cells. Methods Enzymol. 2008;448:483–504.

    Article  CAS  Google Scholar 

  14. Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, et al. A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res. 2007;35(19):e132.

    Article  Google Scholar 

  15. Salles FJ, Strickland S. Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl. 1995;4(6):317–21.

    Article  CAS  Google Scholar 

  16. Minasaki R, Rudel D, Eckmann CR. Increased sensitivity and accuracy of a single-stranded DNA splint-mediated ligation assay (sPAT) reveals poly(A) tail length dynamics of developmentally regulated mRNAs. RNA Biol. 2014;11(2):111–23.

    Article  CAS  Google Scholar 

  17. Muddiman DC, Null AP, Hannis JC. Precise mass measurement of a double-stranded 500 base-pair (309 kDa) polymerase chain reaction product by negative ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(12):1201–4.

    Article  CAS  Google Scholar 

  18. Hannis JC, Muddiman DC. Detection of double-stranded PCR amplicons at the attomole level electrosprayed from low nanomolar solutions using FT-ICR mass spectrometry. Fresenius J Anal Chem. 2001;369(3–4):246–51.

    Article  CAS  Google Scholar 

  19. Ecker DJ, Sampath R, Massire C, Blyn LB, Hall TA, Eshoo MW, et al. Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol. 2008;6(7):553–8.

    Article  CAS  Google Scholar 

  20. Wolk DM, Kaleta EJ, Wysocki VH. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn. 2012;14(4):295–304.

    Article  CAS  Google Scholar 

  21. Beverly M, Dell A, Parmar P, Houghton L. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Anal Bioanal Chem. 2016;408(18):5021–30.

    Article  CAS  Google Scholar 

  22. Gilar M. Analysis and purification of synthetic oligonucleotides by reversed-phase high-performance liquid chromatography with photodiode array and mass spectrometry detection. Anal Biochem. 2001;298(2):196–206.

    Article  CAS  Google Scholar 

  23. Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal Chem. 1997;69(7):1320–5.

    Article  CAS  Google Scholar 

  24. Huber CG, Oberacher H. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2001;20(5):310–43.

    Article  CAS  Google Scholar 

  25. Hail ME, Elliott B, Anderson K. High-throughput analysis of oligonucleotides using automated electrospray ionization mass spectrometry. Am Biotechnol Lab. 2004;22:12–3.

    CAS  Google Scholar 

  26. Haukanes BI, Kvam C. Application of magnetic beads in bioassays. Biotechnology (N Y). 1993;11(1):60–3.

    CAS  Google Scholar 

  27. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol. 2006;73(3):495–504.

    Article  CAS  Google Scholar 

  28. Adams NM, Bordelon H, Wang KK, Albert LE, Wright DW, Haselton FR. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS Appl Mater Interfaces. 2015;7(11):6062–9.

    Article  CAS  Google Scholar 

  29. Blower MD, Jambhekar A, Schwarz DS, Toombs JA. Combining different mRNA capture methods to analyze the transcriptome: analysis of the Xenopus laevis transcriptome. PLoS One. 2013;8(10):e77700.

    Article  CAS  Google Scholar 

  30. Cabada MO, Darnbrough C, Ford PJ, Turner PC. Differential accumulation of two size classes of poly(A) associated with messenger RNA during oogenesis in Xenopus laevis. Dev Biol. 1977;57(2):427–39.

    Article  CAS  Google Scholar 

  31. Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of poly(A) tail and translation during the somatic cell cycle. Mol Cell. 2016;62(3):462–71.

    Article  CAS  Google Scholar 

  32. Jacobsen N, Nielsen PS, Jeffares DC, Eriksen J, Ohlsson H, Arctander P, et al. Direct isolation of poly(A)+ RNA from 4 M guanidine thiocyanate-lysed cell extracts using locked nucleic acid-oligo(T) capture. Nucleic Acids Res. 2004;32(7):e64.

    Article  Google Scholar 

  33. Phelan D, Hondorp K, Choob M, Efimov V, Fernandez J. Messenger RNA isolation using novel PNA analogues. Nucleosides Nucleotides Nucleic Acids. 2001;20(4–7):1107–11.

    Article  CAS  Google Scholar 

  34. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108(13):4009–17.

    Article  CAS  Google Scholar 

  35. Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH. Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem. 1995;270(11):6298–307.

    Article  CAS  Google Scholar 

  36. Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990;18(12):3529–35.

    Article  CAS  Google Scholar 

  37. Molodtsov V, Anikin M, McAllister WT. The presence of an RNA:DNA hybrid that is prone to slippage promotes termination by T7 RNA polymerase. J Mol Biol. 2014;426(18):3095–107.

    Article  CAS  Google Scholar 

  38. Macdonald LE, Zhou Y, McAllister WT. Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol. 1993;232(4):1030–47.

    Article  CAS  Google Scholar 

  39. Anikin M, Molodtsov V, Temiakov D, McAllister WT. Transcript slippage and recoding. In: Atkins JF, Gesteland RF, editors. Recoding: expansion of decoding rules enrishes gene expression, Nucleic acid and molecular biology: Springer; 2010. p. 409–32.

  40. Elango N, Elango S, Shivshankar P, Katz MS. Optimized transfection of mRNA transcribed from a d(a/T)100 tail-containing vector. Biochem Biophys Res Commun. 2005;330(3):958–66.

    Article  CAS  Google Scholar 

  41. Grier AE, Burleigh S, Sahni J, Clough CA, Cardot V, Choe DC, et al. pEVL: a linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences. Mol Ther Nucleic Acids. 2016;5:e306.

    Article  CAS  Google Scholar 

  42. Mockey M, Goncalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun. 2006;340(4):1062–8.

    Article  CAS  Google Scholar 

Download references

Funding

Support for this work was provided by DARPA grant HR-0011-13-3-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Beverly.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Disclaimer

The views, opinions, and/or finding expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

Electronic supplementary material

ESM 1

(PDF 1.04 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beverly, M., Hagen, C. & Slack, O. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS. Anal Bioanal Chem 410, 1667–1677 (2018). https://doi.org/10.1007/s00216-017-0840-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0840-6

Keywords

Navigation