Analytical and Bioanalytical Chemistry

, Volume 410, Issue 6, pp 1825–1831 | Cite as

Capillary zone electrophoresis determination of fluoride in seawater using transient isotachophoresis

  • Keiichi Fukushi
  • Yuki Fujita
  • Junpei Nonogaki
  • Jun-ichi Tsujimoto
  • Takanari Hattori
  • Hideyuki Inui
  • Vladimir P. Beškoski
  • Hiroki Hotta
  • Mitsuru Hayashi
  • Takeshi Nakano
Research Paper

Abstract

We developed capillary zone electrophoresis (CZE) with indirect UV detection for the determination of fluoride (F) in seawater using transient isotachophoresis (tITP) as an on-line concentration procedure. A method of correcting sample salinity effects was also proposed so that F concentrations were obtained using a calibration graph. The proposed method is simple: it requires no sample pretreatment aside from dilution. The following optimum conditions were established: background electrolyte (BGE), 5 mM 2,6-pyridinedicarboxylic acid (PDC) adjusted to pH 3.5 containing 0.03% m/v hydroxypropyl methylcellulose (HPMC); detection wavelength, 200 nm; vacuum (50 kPa) injection period of sample, 5 s (254 nL); and applied voltage, 23 kV with the sample inlet side as the cathode. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) for F reached 0.024 and 0.070 mg/L, respectively. The respective values of the relative standard deviation (RSD) of the peak area, peak height, and migration time for F were 2.5, 3.4, and 0.30%. The proposed method was applied for the determination of F in seawater samples collected from coastal waters of western Japan during August 26–28, 2014. Both results obtained using standard addition method and a calibration graph agreed with those obtained using a conventional spectrophotometric method.

Keywords

Indirect detection Leading type sample self-stacking Product of migration time by peak area Salinity Working graph 

Notes

Acknowledgements

This work was in part supported by a Grant-in-Aid for Challenging Exploratory Research [grant number 25550064] from the Japan Society for the Promotion of Science for H. I.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest related to this study.

Supplementary material

216_2017_838_MOESM1_ESM.pdf (162 kb)
ESM 1 (PDF 162 kb)

References

  1. 1.
    Lou C, Guo D, Wang N, Wu S, Zhang P, Zhu Y. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography. J Chromatogr A. 2017;1500:145–52.CrossRefGoogle Scholar
  2. 2.
    Esquivel-Peña V, Munguía-Acevedo NM, de San Miguel ER, Aguilar JC, de Gyves J. On the control of interferences in the potentiometric fluoride analysis of table salt samples. J Food Compos Anal. 2016;47:60–8.CrossRefGoogle Scholar
  3. 3.
    National minimum effluent standards. In: Water Pollution Prevention Act. Ministry of the Environment in Japan. 1970. http://www.env.go.jp/water/impure/haisui.html. Accessed 28 Aug 2017.
  4. 4.
    Japanese Standards Association. Testing methods for industrial wastewater JIS K 0102. Tokyo: Japanese Standards Association; 2013. p. 106–12.Google Scholar
  5. 5.
    Miyake Y, Kitano S. New water quality chemical analysis. Tokyo: Chijin-shokan; 1980. p. 129–31.Google Scholar
  6. 6.
    Okutani T, Tanaka M. Determination of micro amount of fluoride ion in water samples by micro diffusion method/ion chromatography. Bunseki Kagaku. 1987;36:169–73.CrossRefGoogle Scholar
  7. 7.
    Gros N, Camões MF, Oliveira C, Silva MCR. Ionic composition of seawaters and derived saline solutions determined by ion chromatography and its relation to other water quality parameters. J Chromatogr A. 2008;1210:92–8.CrossRefGoogle Scholar
  8. 8.
    Wang R, Wang N, Ye M, Zhu Y. Determination of low-level anions in seawater by ion chromatography with cycling-column-switching. J Chromatogr A. 2012;1265:186–90.CrossRefGoogle Scholar
  9. 9.
    Fukushi K, Nakayama Y, Tsujimoto J. Highly sensitive capillary zone electrophoresis with artificial seawater as the background electrolyte and transient isotachophoresis as the on-line concentration procedure for simultaneous determination of nitrite and nitrate in seawater. J Chromatogr A. 2003;1005:197–205.CrossRefGoogle Scholar
  10. 10.
    Yokota K, Fukushi K, Takeda S, Wakida S. Simultaneous determination of iodide and iodate in seawater by transient isotachophoresis-capillary zone electrophoresis with artificial seawater as the background electrolyte. J Chromatogr A. 2004;1035:145–50.CrossRefGoogle Scholar
  11. 11.
    Okamoto T, Fukushi K, Takeda S, Wakida S. Determination of phosphate in seawater by CZE with on-line transient ITP. Electrophoresis. 2007;28:3447–52.CrossRefGoogle Scholar
  12. 12.
    Fukushi K, Yamazaki R, Yamane T. Determination of bromate in highly saline samples using CZE with on-line transient ITP. J Sep Sci. 2009;32:457–61.CrossRefGoogle Scholar
  13. 13.
    Tu C, Lee HK. Determination of nitrate in seawater by capillary zone electrophoresis with chloride-induced sample self-stacking. J Chromatogr A. 2002;966:205–12.CrossRefGoogle Scholar
  14. 14.
    Okamoto H, Okamoto Y, Hirokawa T, Timerbaev AR. Trace ion analysis of sea water by capillary electrophoresis: determination of strontium and lithium pre-concentrated by transient isotachophoresis. Analyst. 2003;128:1439–42.CrossRefGoogle Scholar
  15. 15.
    Hattori T, Okamura H, Asaoka S, Fukushi K. Capillary zone electrophoresis determination of aniline and pyridine in sewage samples using transient isotachophoresis with a system-induced terminator. J Chromatogr A. 2017;1511:132–7.CrossRefGoogle Scholar
  16. 16.
    Japanese Standards Association. Lubricants-determination of rust-preventing characteristics JIS K 2510. Tokyo: Japanese Standards Association; 1998. p. 8–9.Google Scholar
  17. 17.
    Okamoto T, Fukushi K, Yokota K, Takeda S, Wakida S. Determination of phosphate in seawater by transient isotachophoresis/capillary zone electrophoresis with suppressed electroosmotic flow. Bunseki Kagaku. 2006;55:627–34.CrossRefGoogle Scholar
  18. 18.
    Štědrý M, Jaroš M, Hruška V, Gaš B. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration. Electrophoresis. 2004;25:3071–9.CrossRefGoogle Scholar
  19. 19.
    Jaroš M, Hruška V, Štědrý M, Zusková I, Gaš B. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Electrophoresis. 2004;25:3080–5.CrossRefGoogle Scholar
  20. 20.
    Isshiki K. In: Fujinaga T, Sorin Y, Isshiki K, editors. Chemistry of sea and lake. Kyoto: Kyoto University Press; 2005. p. 14.Google Scholar
  21. 21.
    Koyama T, Handa N, Sugimura Y. Analysis of lake water and seawater. Tokyo: Kodansha-Scientific; 1982. p. 259.Google Scholar
  22. 22.
    Fukushi K, Hiiro K. Determination of fluoride ion in sea water by capillary type isotachophoresis after coprecipitation enrichment. Bunseki Kagaku. 1985;34:205–8.CrossRefGoogle Scholar
  23. 23.
    Parham H, Rahbar N. Solid phase extraction-spectrophotometric determination of fluoride in water samples using magnetic iron oxide nanoparticles. Talanta. 2009;80:664–9.CrossRefGoogle Scholar
  24. 24.
    Gebauer P, Thormann W, Boček P. Sample self-stacking in zone electrophoresis. J Chromatogr A. 1992;608:47–57.CrossRefGoogle Scholar
  25. 25.
    Tsunogai S, Noriki S. In: Nishimura M, editor. Marine chemistry. Tokyo: Sangyotosho; 1986. p. 15.Google Scholar
  26. 26.
    Kanna N, Tanaka K, Ono T, Ohde S. Coprecipitation of fluoride into jewelry coral (Corallium) skeletons. Bull Soc Sea Water Sci Jpn. 2010;64:225–8.Google Scholar
  27. 27.
    Endo K, Miwa I. Guidebook to biochemistry. Tokyo: Nankodo; 2006. p. 335.Google Scholar
  28. 28.
    Endo K, Miwa I. Guidebook to biochemistry. Tokyo: Nankodo; 2006. p. 322.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Keiichi Fukushi
    • 1
  • Yuki Fujita
    • 2
  • Junpei Nonogaki
    • 2
  • Jun-ichi Tsujimoto
    • 3
  • Takanari Hattori
    • 4
  • Hideyuki Inui
    • 1
  • Vladimir P. Beškoski
    • 5
  • Hiroki Hotta
    • 4
  • Mitsuru Hayashi
    • 4
  • Takeshi Nakano
    • 6
  1. 1.Kobe University Biosignal Research CenterKobeJapan
  2. 2.Kobe University Faculty of Maritime SciencesKobeJapan
  3. 3.Kiso Chemical Enterprises Ltd.KobeJapan
  4. 4.Kobe University Graduate School of Maritime SciencesKobeJapan
  5. 5.University of Belgrade Faculty of ChemistryBelgradeSerbia
  6. 6.Osaka University Research Center for Environmental PreservationOsakaJapan

Personalised recommendations