Analytical and Bioanalytical Chemistry

, Volume 410, Issue 6, pp 1817–1824 | Cite as

Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe

  • Jia Jiang
  • Sizhu Tian
  • Kun Wang
  • Yang Wang
  • Shuang Zang
  • Aimin Yu
  • Ziwei Zhang
Research Paper


With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL−1, and the analytical sensitivity was 1.81 μg mL−1. When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL−1, and the sensitivity was 0.014 and 0.13 μg mL−1 depending on the ratio of nanoparticle to antibody.

Graphical abstract

Schematic diagram of procedure and ESR spectra


Electron spin resonance Immunoassay Iron oxide nanoparticles Sepharose beads Rabbit IgG 



This project was supported by the Research Startup Foundation of Jilin University (No. 450060521178).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Supplementary material

216_2017_837_MOESM1_ESM.pdf (861 kb)
ESM 1 (PDF 861 kb)


  1. 1.
    Yu LL, Cheng Z. Application of electron spin resonance (ESR) spectrometry in nutraceutical and food research. Mol Nutr Food Res. 2008;52:62–78.CrossRefGoogle Scholar
  2. 2.
    Kleschyov AL, Terekhov M. Electron paramagnetic resonance in a biomedical laboratory. Bioanalysis. 2013;5:2233–7.CrossRefGoogle Scholar
  3. 3.
    Bartoszek M, Polak J. An electron paramagnetic resonance study of antioxidant properties of alcoholic beverages. Food Chem. 2012;132:2089–93.CrossRefGoogle Scholar
  4. 4.
    Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. Electron spin resonance in studies of membranes and proteins. Science. 2001;291:266–9.CrossRefGoogle Scholar
  5. 5.
    Burns DT, Flockhart BD. Application of quantitative EPR. Philos Trans R Soc Lond Ser A. 1990;333:37–48.CrossRefGoogle Scholar
  6. 6.
    Weil J. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner. 1984;10:149–65.CrossRefGoogle Scholar
  7. 7.
    Zang S, Tian SZ, Jiang J, Han DD, Yu XY, Wang K, et al. Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV-vis spectrometries. Food Chem. 2017;221:1221–5.CrossRefGoogle Scholar
  8. 8.
    Li D, Jiang J, Han DD, Yu XY, Wang K, Zang S, et al. Measurement of antioxidant capacity by electron spin resonance spectroscopy based on copper(II) reduction. Anal Chem. 2016;88:3885–90.CrossRefGoogle Scholar
  9. 9.
    Miao R, Martinho M, Morales JG, Kim H, Ellis EA, Lill R, et al. EPR and Mossbauer spectroscopy of intact mitochondria isolated from Yah1p-depleted Saccharomyces cerevisiae. Biochemistry-Us. 2008;47:9888–99.CrossRefGoogle Scholar
  10. 10.
    Mazur M. A dozen useful tips on how to minimise the influence of sources of error in quantitative electron paramagnetic resonance (EPR) spectroscopy—a review. Anal Chim Acta. 2006;561:1–15.CrossRefGoogle Scholar
  11. 11.
    Yordanov ND. Quantitative EPR spectrometry—“state of the art”. Appl Magn Reson. 1994;6:241–57.CrossRefGoogle Scholar
  12. 12.
    Chan DW. Immunoassay: a practical guide. Orlando: Academic Press; 1987.Google Scholar
  13. 13.
    Gan SD, Patel KR. Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Derm. 2013;133:1–3.CrossRefGoogle Scholar
  14. 14.
    Catt K, Tregear GW. Solid-phase radioimmunoassay in antibody-coated tubes. Science. 1967;158:1570–2.CrossRefGoogle Scholar
  15. 15.
    Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech. 2002;13:40–6.CrossRefGoogle Scholar
  16. 16.
    Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–8.CrossRefGoogle Scholar
  17. 17.
    Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review. Talanta. 2000;51:415–39.CrossRefGoogle Scholar
  18. 18.
    Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.CrossRefGoogle Scholar
  19. 19.
    Sun Y, Bai YP, Song DQ, Li XZ, Wang U, Zhang HQ. Design and performances of immunoassay based on SPR biosensor with magnetic microbeads. Biosens Bioelectron. 2007;23:473–8.CrossRefGoogle Scholar
  20. 20.
    Leute RK, Ullman EF, Goldstein A, Herzenberg LA. Spin immunoassay technique for determination of morphine. Nat New Biol. 1972;236:93–4.CrossRefGoogle Scholar
  21. 21.
    Janzen EG. Electron spin resonance. Anal Chem. 1974;46:478–90.CrossRefGoogle Scholar
  22. 22.
    Montgomery MR, Holtzman JL. Determination of serum morphine by the spin-label antibody technique. Drug Metab Dispos. 1974;2:391–5.Google Scholar
  23. 23.
    Montgomery MR, Holtzman JL, Leute RK, Dewees JS, Bolz G. Determination of diphenylhydantoin in human serum by spin immunoassay. Clin Chem. 1975;21:221–6.Google Scholar
  24. 24.
    Humphries GK, McConnell HM. Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc Natl Acad Sci U S A. 1974;71:1691–4.CrossRefGoogle Scholar
  25. 25.
    Hsia JC, Tan CT. Membrane immunoassay: principle and applications of spin membrane immunoassay. Ann New York Acad Sci. 1978;308:139–48.CrossRefGoogle Scholar
  26. 26.
    Schall RF Jr, Tenoso HJ. Alternatives to radioimmunoassay: labels and methods. Clin Chem. 1981;27:1157–64.Google Scholar
  27. 27.
    Tan C, Chan SW, Hsia JC. Membrane immunoassay: a spin membrane immunoassay for thyroxine. Meth Enzymology. 1981;74:152–61.CrossRefGoogle Scholar
  28. 28.
    Vistnes AI, Rosenqvist E, Frøholm LO. Spin membrane immunoassay for use in meningococcal serology. J Clin Microbiol. 1983;18:905–11.Google Scholar
  29. 29.
    Li X, Torfs G, Vandewege J, Bauwelinck J, Verbiest JR. Sensitive and quantitative pEPR detection system for SPIO nanoparticles. Electron Lett. 2013;49:1600–1.CrossRefGoogle Scholar
  30. 30.
    Danhier P, De Preter G, Boutry S, Mahieu I, Leveque P, Magat J, et al. Electron paramagnetic resonance as a sensitive tool to assess the iron oxide content in cells for MRI cell labeling studies. Contrast Media Mol Imaging. 2012;7:302–7.CrossRefGoogle Scholar
  31. 31.
    Korchinski DJ, Taha M, Yang RZ, Nathoo N, Dunn JF. Iron oxide as an MRI contrast agent for cell tracking. Magn Reson Insights. 2015;8:15–29.Google Scholar
  32. 32.
    Chertok B, Cole AJ, David AE, Yang VC. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm. 2010;7:375–85.CrossRefGoogle Scholar
  33. 33.
    Danhier P, Magat J, Leveque P, De Preter G, Porporato PE, Bouzin C, et al. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR Biomed. 2015;28:367–75.CrossRefGoogle Scholar
  34. 34.
    Danhier P, De Preter G, Magat J, Godechal Q, Porporato PE, Jordan BF, et al. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. Contrast Media Mol Imaging. 2014;9:143–53.CrossRefGoogle Scholar
  35. 35.
    Gobbo OL, Wetterling F, Vaes P, Teughels S, Markos F, Edge D, et al. Biodistribution and pharmacokinetic studies of SPION using particle electron paramagnetic resonance, MRI and ICP-MS. Nanomedicine-Uk. 2015;10:1751–60.CrossRefGoogle Scholar
  36. 36.
    Edge D, Shortt CM, Gobbo OL, Teughels S, Prina-Mello A, Volkov Y, et al. Pharmacokinetics and bio-distribution of novel super paramagnetic iron oxide nanoparticles (SPIONs) in the anaesthetized pig. Clin Exp Pharmacol Physiol. 2016;43:319–26.CrossRefGoogle Scholar
  37. 37.
    Singh BP, Bohidar HB, Chopra S. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering. Biopolymers. 1991;31:1387–96.CrossRefGoogle Scholar
  38. 38.
    Little JA. Comparison of curve fitting models for ligand binding assays. Chromatographia. 2004;59:S177–S81.CrossRefGoogle Scholar
  39. 39.
    Wild D. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques. Oxford: Elsevier; 2013.Google Scholar
  40. 40.
    Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, et al. Nomenclature of the proteins of cows’ milk—sixth revision. J Dairy Sci. 2004;87:1641–74.CrossRefGoogle Scholar
  41. 41.
    Zhang D, Sun Y, Wu Q, Ma PY, Zhang H, Wang YP, et al. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta. 2016;146:364–8.CrossRefGoogle Scholar
  42. 42.
    Ginel PJ, Margarito JM, Molleda JM, López R, Novales M, Bernadina WE. Biotin-avidin amplified enzyme-linked immunosorbent assay (ELISA) for the measurement of canine serum IgA, IgG and IgM. Res Vet Sci. 1996;60:107–10.CrossRefGoogle Scholar
  43. 43.
    Wang KW, Liang RA, Chen HL, Lu SM, Jia SH, Wang WJ. A microfluidic immunoassay system on a centrifugal platform. Sensor Actuat B-Chem. 2017;251:242–9.CrossRefGoogle Scholar
  44. 44.
    Lee K, Gupta KC, Park SY, Kang IK. Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. J Mater Chem B. 2016;4:704–15.CrossRefGoogle Scholar
  45. 45.
    Qiu LP, Wang CC, Hu P, Wu ZS, Shen GL, Yu RQ. A label-free electrochemical immunoassay for IgG detection based on the electron transfer. Talanta. 2010;83:42–7.CrossRefGoogle Scholar
  46. 46.
    Lopez A, Lovato F, Oh SH, Lai YH, Filbrun S, Driskell EA, et al. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles. Talanta. 2016;146:388–93.CrossRefGoogle Scholar
  47. 47.
    Hu XL, Wu XM, Fang X, Li ZJ, Wang GL. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay. Biosens Bioelectron. 2016;77:666–72.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jia Jiang
    • 1
  • Sizhu Tian
    • 1
  • Kun Wang
    • 1
  • Yang Wang
    • 2
  • Shuang Zang
    • 1
  • Aimin Yu
    • 1
  • Ziwei Zhang
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.Department of Materials Science and EngineeringJilin Institute of Chemical TechnologyJilinChina

Personalised recommendations