Skip to main content
Log in

Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dipicolinic acid (DPA) can cause neurotoxicity and is abundant in bacterial spores. Although analytical methods have been reported for DPA detection with high sensitivity, their selectivity toward DPA is declined greatly in the presence of phosphates in the samples. In this study, we developed an approach for DPA detection that is not affected by the presence of phosphates. A colorimetric method based on the use of gold nanoparticles (AuNP) complexed with Ca2+ as sensing agents was explored for DPA detection. Calcium ions and glutathione-capped gold nanoparticles (AuNPs@GSH) can easily form complexes (Ca2+-AuNP@GSH) through GSH-Ca2+ chelation, leading to the aggregation of AuNPs@GSH. The aggregation resulting from the complexes of AuNPs@GSH and Ca2+ can be reversed with the addition of DPA owing to the high formation constant (log Kf = 4.4) between DPA and Ca2+. Furthermore, the color of AuNPs@GSH changes from red to purple when complexed with Ca2+, returning to red upon addition of DPA. The limit of detection of this sensing method toward DPA was estimated to be as low as ~ 2 μM. The feasibility of using the sensing method for quantitative detection of DPA in soil and Bacillus cereus spore samples was also demonstrated.

A AuNP-based colorimetric sensing method against dipicolinic acid is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maclean M, Murdoch LE, MacGregor SJ, Anderson JG. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol. 2013;89(1):120–6.

    Article  CAS  Google Scholar 

  2. Murrell W. Chemical composition of spores and spore structures. The bacterial spore. 1969;1:215–74.

    Google Scholar 

  3. Kort R, O'brien AC, Van Stokkum IH, Oomes SJ, Crielaard W, Hellingwerf KJ, et al. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl Environ Microbiol. 2005;71(7):3556–64.

    Article  CAS  Google Scholar 

  4. Janssen F, Lund A, Anderson L. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958;127(3288):26–7.

    Article  CAS  Google Scholar 

  5. Manoharan R, Ghiamati E, Dalterio R, Britton K, Nelson W, Sperry J. UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J Microbiol Methods. 1990;11(1):1–15.

    Article  CAS  Google Scholar 

  6. Ghiamati E, Manoharan R, Nelson W, Sperry J. UV resonance Raman spectra of Bacillus spores. Appl Spectrosc. 1992;46(2):357–64.

    Article  CAS  Google Scholar 

  7. Bell SE, Mackle JN, Sirimuthu NM. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—towards rapid anthrax endospore detection. Analyst. 2005;130(4):545–9.

    Article  CAS  Google Scholar 

  8. Grow AE, Wood LL, Claycomb JL, Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods. 2003;53(2):221–33.

    Article  CAS  Google Scholar 

  9. Hupert N, Bearman GM, Mushlin AI, Callahan MA. Accuracy of screening for inhalational anthrax after a bioterrorist attack. Ann Inter Med. 2003;139(5_Part_1):337–45.

    Article  Google Scholar 

  10. Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3(1):20.

    Article  Google Scholar 

  11. Food, Administration D. Bad bug book: handbook of foodborne pathogenic microorganisms and natural toxins. Center for Food Safety and Applied Nutrition. 2012.

  12. Foster A, Collins J, Schwarcz R. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology. 1983;22(12):1331–42.

    Article  CAS  Google Scholar 

  13. Birley S, Collins J, Perkins M, Stone T. The effects of cyclic dicarboxylic acids on spontaneous and amino acid-evoked activity of rat cortical neurones. Br J Pharmacol. 1982;77(1):7–12.

    Article  CAS  Google Scholar 

  14. Gopich IV, Szabo A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Nat Acad Sci. 2012;109(20):7747–52.

    Article  CAS  Google Scholar 

  15. Schurr A, West CA, Rigor B. Neurotoxicity of quinolinic acid and its derivatives in hypoxic rat hippocampal slices. Brain Res. 1991;568(1):199–204.

    Article  CAS  Google Scholar 

  16. Basile F, Zhang S, Shin Y-S, Drolet B. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores. Analyst. 2010;135(4):797–803.

    Article  CAS  Google Scholar 

  17. Warth A. Liquid chromatographic determination of dipicolinic acid from bacterial spores. Appl Environ Microbiol. 1979;38(6):1029–33.

    CAS  Google Scholar 

  18. Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss. 2006;132:281–92.

    Article  CAS  Google Scholar 

  19. Cowcher DP, Xu Y, Goodacre R. Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering. Anal Chem. 2013;85(6):3297–302.

    Article  CAS  Google Scholar 

  20. Cheung M, Lee WW, Cowcher DP, Goodacre R, Bell SE. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem Commun. 2016;52(64):9925–8.

    Article  CAS  Google Scholar 

  21. Lewis J. Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Anal Biochem. 1967;19(2):327–37.

    Article  CAS  Google Scholar 

  22. Hindle A, Hall EH. Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst. 1999;124(11):1599–604.

    Article  CAS  Google Scholar 

  23. Nudelman R, Bronk B, Efrima S. Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts. Appl Spectrosc. 2000;54(3):445–9.

    Article  CAS  Google Scholar 

  24. Donmez M, Yilmaz MD, Kilbas B. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles. J Hazard Mater. 2017;324:593–8.

    Article  CAS  Google Scholar 

  25. Gonçalves LCP, Da Silva SM, DeRose PC, Ando RA, Bastos EL. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores. PLoS One. 2013;8(9):e73701.

    Article  Google Scholar 

  26. Clear KJ, Stroud S, Smith BD. Dual colorimetric and luminescent assay for dipicolinate, a biomarker of bacterial spores. Analyst. 2013;138(23):7079–82.

    Article  CAS  Google Scholar 

  27. Shivakiran M, Venkataramana M, Rao PL. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex. Appl Microbiol Biotechnol. 2016;100(2):893.

    Article  CAS  Google Scholar 

  28. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, et al. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol. 2017;15(1):25.

    Article  Google Scholar 

  29. Zhang Y, Li B, Ma H, Zhang L, Zheng Y. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron. 2016;85:287–93.

    Article  CAS  Google Scholar 

  30. Bhardwaj N, Bhardwaj S, Mehta J, Kim K-H, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron. 2016;86:799–804.

    Article  CAS  Google Scholar 

  31. DaCosta MV, Doughan S, Han Y, Krull UJ. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta. 2014;832:1–33.

    Article  CAS  Google Scholar 

  32. Thibon A, Pierre VC. Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal Bioanal Chem. 2009;394(1):107–20.

    Article  CAS  Google Scholar 

  33. Fell NF, Pellegrino PM, Gillespie JB. Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence. Anal Chim Acta. 2001;426(1):43–50.

    Article  CAS  Google Scholar 

  34. Brandes Ammann A, Kölle L, Brandl H. Detection of bacterial endospores in soil by terbium fluorescence. Int. J. Microbiol. 2011;2011.

  35. Pellegrino PM, Fell NF, Rosen DL, Gillespie JB. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal Chem. 1998;70(9):1755–60.

    Article  CAS  Google Scholar 

  36. Warth AD. Determination of dipicolinic acid in bacterial spores by derivative spectroscopy. Anal Biochem. 1983;130(2):502–5.

    Article  CAS  Google Scholar 

  37. Lai H-Z, Wang S-G, Wu C-Y, Chen Y-C. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2015;87(4):2114–20.

    Article  CAS  Google Scholar 

  38. Chai F, Wang C, Wang T, Li L, Su Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces. 2010;2(5):1466–70.

    Article  CAS  Google Scholar 

  39. Uddayasankar U, Krull UJ. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density. Analytica Chim. Acta. 2013;803:113–22.

    Article  CAS  Google Scholar 

  40. Langer J, García I, Liz-Marzan LM. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss. 2017.

  41. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51.

    Article  Google Scholar 

  42. Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Analytica Chim Acta. 2011;706(1):8–24.

    Article  CAS  Google Scholar 

  43. Chen J-Y, Chen Y-C. A label-free sensing method for phosphopeptides using two-layer gold nanoparticle-based localized surface plasma resonance spectroscopy. Anal Bioanal Chem. 2011;399(3):1173–80.

    Article  CAS  Google Scholar 

  44. Lin H-Y, Chen C-T, Chen Y-C. Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal Chem. 2006;78(19):6873–8.

    Article  CAS  Google Scholar 

  45. Rodríguez-Lorenzo L, De La Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater. 2012;11(7):604–7.

    Article  Google Scholar 

  46. Hong X, Hall EA. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst. 2012;137(20):4712–9.

    Article  CAS  Google Scholar 

  47. Wu C, Xu Q-H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir. 2009;25(16):9441–6.

    Article  CAS  Google Scholar 

  48. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, et al. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37(9):1792–805.

    Article  CAS  Google Scholar 

  49. Kuo Y-L, Wang S-G, Wu C-Y, Lee K-C, Jao C-J, Chou S-H, et al. Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria. Nanomedicine. 2016;11(19):2497–510.

    Article  CAS  Google Scholar 

  50. Selvaprakash K, Chen Y-C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron. 2017;92:410–6.

    Article  CAS  Google Scholar 

  51. Liu Y, Li C, Liu Y, Tang Z. Helical silver (I)-glutathione biocoordination polymer nanofibres. Phil Trans R Soc London A. 2013;371(2000):20120307.

    Article  Google Scholar 

  52. Baig MMF, Chen C-T, Chen Y-C. Photoluminescence determination of aluminum using glutathione-capped gold nanoclusters. Anal Lett. 2016;49(14):2246–58.

    Article  CAS  Google Scholar 

  53. Liu J, Xia X, Li Y, Wang H, Li Z. Theoretical study on the interaction of glutathione with group IA (Li+, Na+, K+), IIA (Be2+, Mg2+, Ca2+), and IIIA (Al3+) metal cations. Struc Chem. 2013;24(1):251–61.

    Article  CAS  Google Scholar 

  54. Li P-H, Lin J-Y, Chen C-T, Ciou W-R, Chan P-H, Luo L, et al. Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal Chem. 2012;84(13):5484–8.

    Article  CAS  Google Scholar 

  55. Van Der Houwen J, Valsami-Jones E. The application of calcium phosphate precipitation chemistry to phosphorus recovery: the influence of organic ligands. Environ Technol. 2001;22(11):1325–35.

    Article  Google Scholar 

  56. Christiansen T, Busch J, Krogh S. Successive determinations of calcium and magnesium in drinking water by complexometric, potentiometric digital titration to two equivalence points. Anal Chem. 1976;48(7):1051–6.

    Article  CAS  Google Scholar 

  57. Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc. 1996;118(24):5752–63.

    Article  CAS  Google Scholar 

  58. Kezia K, Lee J, Zisu B, Chen G, Gras S, Kentish S. Solubility of calcium phosphate in concentrated dairy effluent brines. J Agric Food Chem. 2017;65(20):4027–34.

    Article  CAS  Google Scholar 

  59. Tajkarimi M. Bacillus cereus. Professional in Human Resources (PHR-250), University of California USA. 2007.

  60. Knaysi G. Determination, by spodography, of the intracellular distribution of mineral matter throughout the life history of Bacillus cereus. J Bacteriol. 1961;82(4):556–63.

    CAS  Google Scholar 

  61. Kalle G, Khandekar P. Dipicolinic acid as a secondary metabolite in Penicillium citreoviride. J Biosci. 1983;5(1):43–52.

    Article  CAS  Google Scholar 

  62. Lobodin VV, Juyal P, McKenna AM, Rodgers RP, Marshall AG. Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry. Anal Chem. 2013;85(16):7803–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan (MOST102-2113-M-009-019-MY3) for financial support of this research. MMFB thanks NCTU for providing him International Student Scholarship. We also thank Miss Ya-Ling Yang for her help in drawing the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chie Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1.08 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, M.M.F., Chen, YC. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples. Anal Bioanal Chem 410, 1805–1815 (2018). https://doi.org/10.1007/s00216-017-0836-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0836-2

Keywords

Navigation