Analytical and Bioanalytical Chemistry

, Volume 410, Issue 6, pp 1805–1815 | Cite as

Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples

Research Paper

Abstract

Dipicolinic acid (DPA) can cause neurotoxicity and is abundant in bacterial spores. Although analytical methods have been reported for DPA detection with high sensitivity, their selectivity toward DPA is declined greatly in the presence of phosphates in the samples. In this study, we developed an approach for DPA detection that is not affected by the presence of phosphates. A colorimetric method based on the use of gold nanoparticles (AuNP) complexed with Ca2+ as sensing agents was explored for DPA detection. Calcium ions and glutathione-capped gold nanoparticles (AuNPs@GSH) can easily form complexes (Ca2+-AuNP@GSH) through GSH-Ca2+ chelation, leading to the aggregation of AuNPs@GSH. The aggregation resulting from the complexes of AuNPs@GSH and Ca2+ can be reversed with the addition of DPA owing to the high formation constant (log Kf = 4.4) between DPA and Ca2+. Furthermore, the color of AuNPs@GSH changes from red to purple when complexed with Ca2+, returning to red upon addition of DPA. The limit of detection of this sensing method toward DPA was estimated to be as low as ~ 2 μM. The feasibility of using the sensing method for quantitative detection of DPA in soil and Bacillus cereus spore samples was also demonstrated.

Graphical abstract

A AuNP-based colorimetric sensing method against dipicolinic acid is developed.

Keywords

Gold nanoparticles Dipicolinic acid Colorimetric sensing Bacterial spores 

Notes

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan (MOST102-2113-M-009-019-MY3) for financial support of this research. MMFB thanks NCTU for providing him International Student Scholarship. We also thank Miss Ya-Ling Yang for her help in drawing the graphical abstract.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_836_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1.08 mb).

References

  1. 1.
    Maclean M, Murdoch LE, MacGregor SJ, Anderson JG. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol. 2013;89(1):120–6.CrossRefGoogle Scholar
  2. 2.
    Murrell W. Chemical composition of spores and spore structures. The bacterial spore. 1969;1:215–74.Google Scholar
  3. 3.
    Kort R, O'brien AC, Van Stokkum IH, Oomes SJ, Crielaard W, Hellingwerf KJ, et al. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl Environ Microbiol. 2005;71(7):3556–64.CrossRefGoogle Scholar
  4. 4.
    Janssen F, Lund A, Anderson L. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958;127(3288):26–7.CrossRefGoogle Scholar
  5. 5.
    Manoharan R, Ghiamati E, Dalterio R, Britton K, Nelson W, Sperry J. UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J Microbiol Methods. 1990;11(1):1–15.CrossRefGoogle Scholar
  6. 6.
    Ghiamati E, Manoharan R, Nelson W, Sperry J. UV resonance Raman spectra of Bacillus spores. Appl Spectrosc. 1992;46(2):357–64.CrossRefGoogle Scholar
  7. 7.
    Bell SE, Mackle JN, Sirimuthu NM. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—towards rapid anthrax endospore detection. Analyst. 2005;130(4):545–9.CrossRefGoogle Scholar
  8. 8.
    Grow AE, Wood LL, Claycomb JL, Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods. 2003;53(2):221–33.CrossRefGoogle Scholar
  9. 9.
    Hupert N, Bearman GM, Mushlin AI, Callahan MA. Accuracy of screening for inhalational anthrax after a bioterrorist attack. Ann Inter Med. 2003;139(5_Part_1):337–45.CrossRefGoogle Scholar
  10. 10.
    Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3(1):20.CrossRefGoogle Scholar
  11. 11.
    Food, Administration D. Bad bug book: handbook of foodborne pathogenic microorganisms and natural toxins. Center for Food Safety and Applied Nutrition. 2012.Google Scholar
  12. 12.
    Foster A, Collins J, Schwarcz R. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology. 1983;22(12):1331–42.CrossRefGoogle Scholar
  13. 13.
    Birley S, Collins J, Perkins M, Stone T. The effects of cyclic dicarboxylic acids on spontaneous and amino acid-evoked activity of rat cortical neurones. Br J Pharmacol. 1982;77(1):7–12.CrossRefGoogle Scholar
  14. 14.
    Gopich IV, Szabo A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Nat Acad Sci. 2012;109(20):7747–52.CrossRefGoogle Scholar
  15. 15.
    Schurr A, West CA, Rigor B. Neurotoxicity of quinolinic acid and its derivatives in hypoxic rat hippocampal slices. Brain Res. 1991;568(1):199–204.CrossRefGoogle Scholar
  16. 16.
    Basile F, Zhang S, Shin Y-S, Drolet B. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores. Analyst. 2010;135(4):797–803.CrossRefGoogle Scholar
  17. 17.
    Warth A. Liquid chromatographic determination of dipicolinic acid from bacterial spores. Appl Environ Microbiol. 1979;38(6):1029–33.Google Scholar
  18. 18.
    Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss. 2006;132:281–92.CrossRefGoogle Scholar
  19. 19.
    Cowcher DP, Xu Y, Goodacre R. Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering. Anal Chem. 2013;85(6):3297–302.CrossRefGoogle Scholar
  20. 20.
    Cheung M, Lee WW, Cowcher DP, Goodacre R, Bell SE. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem Commun. 2016;52(64):9925–8.CrossRefGoogle Scholar
  21. 21.
    Lewis J. Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Anal Biochem. 1967;19(2):327–37.CrossRefGoogle Scholar
  22. 22.
    Hindle A, Hall EH. Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst. 1999;124(11):1599–604.CrossRefGoogle Scholar
  23. 23.
    Nudelman R, Bronk B, Efrima S. Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts. Appl Spectrosc. 2000;54(3):445–9.CrossRefGoogle Scholar
  24. 24.
    Donmez M, Yilmaz MD, Kilbas B. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles. J Hazard Mater. 2017;324:593–8.CrossRefGoogle Scholar
  25. 25.
    Gonçalves LCP, Da Silva SM, DeRose PC, Ando RA, Bastos EL. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores. PLoS One. 2013;8(9):e73701.CrossRefGoogle Scholar
  26. 26.
    Clear KJ, Stroud S, Smith BD. Dual colorimetric and luminescent assay for dipicolinate, a biomarker of bacterial spores. Analyst. 2013;138(23):7079–82.CrossRefGoogle Scholar
  27. 27.
    Shivakiran M, Venkataramana M, Rao PL. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex. Appl Microbiol Biotechnol. 2016;100(2):893.CrossRefGoogle Scholar
  28. 28.
    Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, et al. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol. 2017;15(1):25.CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Li B, Ma H, Zhang L, Zheng Y. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron. 2016;85:287–93.CrossRefGoogle Scholar
  30. 30.
    Bhardwaj N, Bhardwaj S, Mehta J, Kim K-H, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron. 2016;86:799–804.CrossRefGoogle Scholar
  31. 31.
    DaCosta MV, Doughan S, Han Y, Krull UJ. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta. 2014;832:1–33.CrossRefGoogle Scholar
  32. 32.
    Thibon A, Pierre VC. Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal Bioanal Chem. 2009;394(1):107–20.CrossRefGoogle Scholar
  33. 33.
    Fell NF, Pellegrino PM, Gillespie JB. Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence. Anal Chim Acta. 2001;426(1):43–50.CrossRefGoogle Scholar
  34. 34.
    Brandes Ammann A, Kölle L, Brandl H. Detection of bacterial endospores in soil by terbium fluorescence. Int. J. Microbiol. 2011;2011.Google Scholar
  35. 35.
    Pellegrino PM, Fell NF, Rosen DL, Gillespie JB. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal Chem. 1998;70(9):1755–60.CrossRefGoogle Scholar
  36. 36.
    Warth AD. Determination of dipicolinic acid in bacterial spores by derivative spectroscopy. Anal Biochem. 1983;130(2):502–5.CrossRefGoogle Scholar
  37. 37.
    Lai H-Z, Wang S-G, Wu C-Y, Chen Y-C. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2015;87(4):2114–20.CrossRefGoogle Scholar
  38. 38.
    Chai F, Wang C, Wang T, Li L, Su Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces. 2010;2(5):1466–70.CrossRefGoogle Scholar
  39. 39.
    Uddayasankar U, Krull UJ. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density. Analytica Chim. Acta. 2013;803:113–22.CrossRefGoogle Scholar
  40. 40.
    Langer J, García I, Liz-Marzan LM. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss. 2017.Google Scholar
  41. 41.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51.CrossRefGoogle Scholar
  42. 42.
    Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Analytica Chim Acta. 2011;706(1):8–24.CrossRefGoogle Scholar
  43. 43.
    Chen J-Y, Chen Y-C. A label-free sensing method for phosphopeptides using two-layer gold nanoparticle-based localized surface plasma resonance spectroscopy. Anal Bioanal Chem. 2011;399(3):1173–80.CrossRefGoogle Scholar
  44. 44.
    Lin H-Y, Chen C-T, Chen Y-C. Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal Chem. 2006;78(19):6873–8.CrossRefGoogle Scholar
  45. 45.
    Rodríguez-Lorenzo L, De La Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater. 2012;11(7):604–7.CrossRefGoogle Scholar
  46. 46.
    Hong X, Hall EA. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst. 2012;137(20):4712–9.CrossRefGoogle Scholar
  47. 47.
    Wu C, Xu Q-H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir. 2009;25(16):9441–6.CrossRefGoogle Scholar
  48. 48.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, et al. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37(9):1792–805.CrossRefGoogle Scholar
  49. 49.
    Kuo Y-L, Wang S-G, Wu C-Y, Lee K-C, Jao C-J, Chou S-H, et al. Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria. Nanomedicine. 2016;11(19):2497–510.CrossRefGoogle Scholar
  50. 50.
    Selvaprakash K, Chen Y-C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron. 2017;92:410–6.CrossRefGoogle Scholar
  51. 51.
    Liu Y, Li C, Liu Y, Tang Z. Helical silver (I)-glutathione biocoordination polymer nanofibres. Phil Trans R Soc London A. 2013;371(2000):20120307.CrossRefGoogle Scholar
  52. 52.
    Baig MMF, Chen C-T, Chen Y-C. Photoluminescence determination of aluminum using glutathione-capped gold nanoclusters. Anal Lett. 2016;49(14):2246–58.CrossRefGoogle Scholar
  53. 53.
    Liu J, Xia X, Li Y, Wang H, Li Z. Theoretical study on the interaction of glutathione with group IA (Li+, Na+, K+), IIA (Be2+, Mg2+, Ca2+), and IIIA (Al3+) metal cations. Struc Chem. 2013;24(1):251–61.CrossRefGoogle Scholar
  54. 54.
    Li P-H, Lin J-Y, Chen C-T, Ciou W-R, Chan P-H, Luo L, et al. Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal Chem. 2012;84(13):5484–8.CrossRefGoogle Scholar
  55. 55.
    Van Der Houwen J, Valsami-Jones E. The application of calcium phosphate precipitation chemistry to phosphorus recovery: the influence of organic ligands. Environ Technol. 2001;22(11):1325–35.CrossRefGoogle Scholar
  56. 56.
    Christiansen T, Busch J, Krogh S. Successive determinations of calcium and magnesium in drinking water by complexometric, potentiometric digital titration to two equivalence points. Anal Chem. 1976;48(7):1051–6.CrossRefGoogle Scholar
  57. 57.
    Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc. 1996;118(24):5752–63.CrossRefGoogle Scholar
  58. 58.
    Kezia K, Lee J, Zisu B, Chen G, Gras S, Kentish S. Solubility of calcium phosphate in concentrated dairy effluent brines. J Agric Food Chem. 2017;65(20):4027–34.CrossRefGoogle Scholar
  59. 59.
    Tajkarimi M. Bacillus cereus. Professional in Human Resources (PHR-250), University of California USA. 2007.Google Scholar
  60. 60.
    Knaysi G. Determination, by spodography, of the intracellular distribution of mineral matter throughout the life history of Bacillus cereus. J Bacteriol. 1961;82(4):556–63.Google Scholar
  61. 61.
    Kalle G, Khandekar P. Dipicolinic acid as a secondary metabolite in Penicillium citreoviride. J Biosci. 1983;5(1):43–52.CrossRefGoogle Scholar
  62. 62.
    Lobodin VV, Juyal P, McKenna AM, Rodgers RP, Marshall AG. Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry. Anal Chem. 2013;85(16):7803–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations