Analytical and Bioanalytical Chemistry

, Volume 410, Issue 6, pp 1631–1646 | Cite as

Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis

  • Esen Efeoglu
  • Marcus A. Maher
  • Alan Casey
  • Hugh J. Byrne
Paper in Forefront


The acceleration of nanomaterials research has brought about increased demands for rapid analysis of their bioactivity, in a multi-parametric fashion, to minimize the gap between potential applications and knowledge of their toxicological properties. The potential of Raman microspectroscopy for the analysis of biological systems with the aid of multivariate analysis techniques has been demonstrated. In this study, an overview of recent efforts towards establishing a ‘label-free high content nanotoxicological assessment technique’ using Raman microspectroscopy is presented. The current state of the art for cellular toxicity assessment and the potential of Raman microspectroscopy are discussed, and the spectral markers of the cellular toxic responses upon exposure to nanoparticles, changes on the identified spectral markers upon exposure to different nanoparticles, cell death mechanisms, and the effects of nanoparticles on different cell lines are summarized. Moreover, 3D toxicity plots of spectral markers, as a function of time and dose, are introduced as new methodology for toxicological analysis based on the intrinsic properties of the biomolecular changes, such as cytoplasmic RNA aberrations, protein and lipid damage associated with the toxic response. The 3D evolution of the spectral markers are correlated with the results obtained by commonly used cytotoxicity assays, and significant similarities are observed between band intensity and percentage viability obtained by the Alamar Blue assay, as an example. Therefore, the developed 3D plots can be used to identify toxicological properties of a nanomaterial and can potentially be used to predict toxicity, which can provide rapid advances in nanomedicine.

Graphical Abstract

Spectral markers of cytotoxicity as a function of time and dose


Nanotoxicology Cytotoxicity Genotoxicity Raman microspectroscopy High content analysis Spectral markers 



This work was supported by Science Foundation Ireland Principle Investigator Award 11/PI/1108.

Compliance with ethical standards

Conflict of Interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2(8):1–35.
  2. 2.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61(9):727–8.CrossRefGoogle Scholar
  3. 3.
    Institute of Medicine (US) Roundtable on Environmental Health Sciences, Research, and Medicine. Implications of nanotechnology for environmental health research. Washington (DC): National Academies Press (US); 2005. Scholar
  4. 4.
    Guisbiers G. Size-dependent materials properties toward a universal equation. Nanoscale Res Lett. 2010;5(7):1132–6.CrossRefGoogle Scholar
  5. 5.
    Jagiello K, Chomicz B, Avramopoulos A, Gajewicz A, Mikolajczyk A, Bonifassi P, et al. Size-dependent electronic properties of nanomaterials: how this novel class of nanodescriptors supposed to be calculated? Struct Chem. 2017;28(3):635–43.CrossRefGoogle Scholar
  6. 6.
    Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc. 2010;368(1915):1333–83.CrossRefGoogle Scholar
  7. 7.
    Recent Trends in Nanotechnology and Materials Science. 1 ed. Springer International Publishing; 2014.
  8. 8.
    Laurvick CAC, Singaraju B. Nanotechnology in aerospace systems. IEEE Aerosp Electron Syst. 2003;18(9):18–22.CrossRefGoogle Scholar
  9. 9.
    Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 2012;4(3):186–93.CrossRefGoogle Scholar
  10. 10.
    Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine. 2005;1(2):101–9.CrossRefGoogle Scholar
  11. 11.
    Park K. Nanotechnology: What it can do for drug delivery. J Control Release. 2007;120(1-2):1–3.CrossRefGoogle Scholar
  12. 12.
    Sailor MJ, Link JR. “Smart dust”: nanostructured devices in a grain of sand. Chem Commun (Camb). 2005(11):1375–83.Google Scholar
  13. 13.
    Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A. 1999;96(9):5177–81.CrossRefGoogle Scholar
  14. 14.
    Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli MA, Forni F, et al. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr Med Chem. 2013;20(17):2212–25.CrossRefGoogle Scholar
  15. 15.
    Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6(11):1175–94.CrossRefGoogle Scholar
  16. 16.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64(Supplement):24–36.CrossRefGoogle Scholar
  17. 17.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.CrossRefGoogle Scholar
  18. 18.
    Society R, Engineering RA. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. Royal Society; 2004. Accessed August 2017.
  19. 19.
    OECD. Safety of manufactured nanomaterials. Accessed August 2017.
  20. 20.
    OECD. OECD, Series on the Safety of Manufactured Nanomaterials. 2010. pp. 46.Google Scholar
  21. 21.
    EU 'NanoSafetyCluster'. NanoSafety Cluster. Accessed August 2017.
  22. 22.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.CrossRefGoogle Scholar
  23. 23.
    Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.CrossRefGoogle Scholar
  24. 24.
    Rampersad SN. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012;12(9):12347–60.CrossRefGoogle Scholar
  25. 25.
    Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 2011;54:10–4.Google Scholar
  26. 26.
    Brzoska M, Langer K, Coester C, Loitsch S, Wagner TO, Mallinckrodt C. Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun. 2004;318(2):562–70.CrossRefGoogle Scholar
  27. 27.
    Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32.CrossRefGoogle Scholar
  28. 28.
    Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M. A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay. Toxicol Lett. 2007;174(1-3):49–60.CrossRefGoogle Scholar
  29. 29.
    Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett. 2008;179(2):78–84.CrossRefGoogle Scholar
  30. 30.
    Sandin P, Fitzpatrick LW, Simpson JC, Dawson KA. High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano. 2012;6(2):1513–21.CrossRefGoogle Scholar
  31. 31.
    Fazlollahi F, Angelow S, Yacobi NR, Marchelletta R, Yu ASL, Hamm-Alvarez SF, et al. Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine. 2011;7(5):588–94.CrossRefGoogle Scholar
  32. 32.
    Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, et al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano. 2008;2(5):928–38.CrossRefGoogle Scholar
  33. 33.
    Handbook Of Biological Confocal Microscopy. Springer US; 2006.
  34. 34.
    Radio NM, Breier JM, Shafer TJ, Mundy WR. Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci. 2008;105(1):106–18.CrossRefGoogle Scholar
  35. 35.
    Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, et al. Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A. 2008;105(1):33–8.CrossRefGoogle Scholar
  36. 36.
    Ding GJ, Fischer PA, Boltz RC, Schmidt JA, Colaianne JJ, Gough A, et al. Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system. J Biol Chem. 1998;273(44):28897–905.CrossRefGoogle Scholar
  37. 37.
    Zock JM. Applications of high content screening in life science research. Comb Chem High Throughput Screen. 2009;12(9):870–6.CrossRefGoogle Scholar
  38. 38.
    Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, et al. ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem. 2008;283(19):13269–79.CrossRefGoogle Scholar
  39. 39.
    Liebel U, Link W. Meeting report: trends and challenges in high content analysis. Biotechnol J. 2007;2(8):938–40.CrossRefGoogle Scholar
  40. 40.
    Brayden DJ, Cryan S-A, Dawson KA, O’Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today. 2015;20(8):942–57.CrossRefGoogle Scholar
  41. 41.
    Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014;6(1):9–26.CrossRefGoogle Scholar
  42. 42.
    Manke A, Wang L, Rojanasakul Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. Biomed Res Int. 2013;2013:15.CrossRefGoogle Scholar
  43. 43.
    Sierra MI, Valdés A, Fernández AF, Torrecillas R, Fraga MF. The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int J Nanomedicine. 2016;11:6297–306.CrossRefGoogle Scholar
  44. 44.
    Mukherjee SP, Byrne HJ. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine. 2013;9(2):202–11.CrossRefGoogle Scholar
  45. 45.
    Mukherjee SP, Davoren M, Byrne HJ. In vitro mammalian cytotoxicological study of PAMAM dendrimers - towards quantitative structure activity relationships. Toxicol In Vitro. 2010;24(1):169–77.CrossRefGoogle Scholar
  46. 46.
    Efeoglu E, Casey A, Byrne HJ. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst. 2016;141(18):5417–31.CrossRefGoogle Scholar
  47. 47.
    Naha PC, Davoren M, Lyng FM, Byrne HJ. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol. 2010;246(1–2):91–9.CrossRefGoogle Scholar
  48. 48.
    Naha PC, Byrne HJ. Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol. 2013;132-133:61–72.CrossRefGoogle Scholar
  49. 49.
    Martinez E, Lagunas A, Mills CA, Rodriguez-Segui S, Estevez M, Oberhansl S, et al. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine. 2009;4(1):65–82.CrossRefGoogle Scholar
  50. 50.
    Efeoglu E, Maher MA, Casey A, Byrne HJ. Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2). Analyst. 2017;142(18):3500–13.CrossRefGoogle Scholar
  51. 51.
    Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology. 2006;225(1):48–54.CrossRefGoogle Scholar
  52. 52.
    Kim HR, Park YJ, Shin DY, Oh SM, Chung KH. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol. 2013;28:e2013003.CrossRefGoogle Scholar
  53. 53.
    Jin Y, Kannan S, Wu M, Zhao JX. Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol. 2007;20(8):1126–33.CrossRefGoogle Scholar
  54. 54.
    Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(3):219–31.CrossRefGoogle Scholar
  55. 55.
    Chew WS, Poh KW, Siddiqi NJ, Alhomida AS, Yu LE, Ong WY. Short- and long-term changes in blood miRNA levels after nanogold injection in rats-potential biomarkers of nanoparticle exposure. Biomarkers. 2012;17(8):750–7.CrossRefGoogle Scholar
  56. 56.
    Holder AL, Goth-Goldstein R, Lucas D, Koshland CP. Particle-induced artifacts in the MTT and LDH viability assays. Chem Res Toxicol. 2012;25(9):1885–92.CrossRefGoogle Scholar
  57. 57.
    Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon. 2007;45(7):1425–32.CrossRefGoogle Scholar
  58. 58.
    Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability assays. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al., editors. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.Google Scholar
  59. 59.
    Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA. Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst. 2011;7(2):371–8.CrossRefGoogle Scholar
  60. 60.
    Salvati A, Aberg C, dos Santos T, Varela J, Pinto P, Lynch I, et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine. 2011;7(6):818–26.CrossRefGoogle Scholar
  61. 61.
    Suh H, Jeong B, Liu F, Kim SW. Cellular Uptake Study of Biodegradable Nanoparticles in Vascular Smooth Muscle Cells. Pharm Res. 1998;15(9):1495–8.CrossRefGoogle Scholar
  62. 62.
    ACS. American Chemical Society International Historic Chemical Landmarks. The Raman Effect. Accessed July 2017.
  63. 63.
    Adjouri C, Elliasmine A, Le Duff Y. Low-light-level Raman spectroscopy using a charge-coupled device detector. (Eugene, Oregon): Spectroscopy 1996. pp. 46–9.Google Scholar
  64. 64.
    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–87.CrossRefGoogle Scholar
  65. 65.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif). 2008;1:601–26.CrossRefGoogle Scholar
  66. 66.
    Zhang Z, Sheng S, Wang R, Sun M. Tip-enhanced raman spectroscopy. Anal Chem. 2016;88(19):9328–46.CrossRefGoogle Scholar
  67. 67.
    Zheltikov AM. Coherent anti-stokes raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations. J Raman Spectrosc. 2000;31(8-9):653–67.CrossRefGoogle Scholar
  68. 68.
    Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol. 2011;7(3):137–45.CrossRefGoogle Scholar
  69. 69.
    Walton AG, Deveney MJ, Koenig JL. Raman spectroscopy of calcified tissue. Calcif Tissue Int. 1970;6(1):162–7.CrossRefGoogle Scholar
  70. 70.
    Puppels G, Greve J. Whole cell studies and tissue characterization by Raman spectroscopy. “Biomedical applications of spectroscopy”. New York: John Wiley and Sons; 1996.Google Scholar
  71. 71.
    Bonnier F, Petitjean F, Baker MJ, Byrne HJ. Improved protocols for vibrational spectroscopic analysis of body fluids. J Biophotonics. 2014;7(3-4):167–79.CrossRefGoogle Scholar
  72. 72.
    Bonnier F, Mehmood A, Knief P, Meade AD, Hornebeck W, Lambkin H, et al. In vitro analysis of immersed human tissues by Raman microspectroscopy. J Raman Spectrosc. 2011;42(5):888–96.CrossRefGoogle Scholar
  73. 73.
    Dorney J, Bonnier F, Garcia A, Casey A, Chambers G, Byrne HJ. Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst. 2012;137(5):1111–9.CrossRefGoogle Scholar
  74. 74.
    Efeoglu E, Keating M, McIntyre J, Casey A, Byrne HJ. Determination of nanoparticle localization within subcellular organelles in vitro using Raman spectroscopy. Anal Methods. 2015;7(23):10000–17.CrossRefGoogle Scholar
  75. 75.
    Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19.CrossRefGoogle Scholar
  76. 76.
    Keating ME, Bonnier F, Byrne HJ. Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells. Analyst. 2012;137(24):5792–802.CrossRefGoogle Scholar
  77. 77.
    Carey PR. Biochemical applications of Raman and resonance Raman spectroscopies. Accessed from New York: Academic Press; 1982.
  78. 78.
    Klein K, Gigler Alexander M, Aschenbrenner T, Monetti R, Bunk W, Jamitzky F, et al. Label-free live-cell imaging with confocal Raman microscopy. Biophys J. 2012;102(2):360–8.CrossRefGoogle Scholar
  79. 79.
    Krauss SD, Petersen D, Niedieker D, Fricke I, Freier E, El-Mashtoly SF, et al. Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study. Analyst. 2015;140(7):2360–8.CrossRefGoogle Scholar
  80. 80.
    Carvalho LF, Bonnier F, O'Callaghan K, O'Sullivan J, Flint S, Byrne HJ, et al. Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. Exp Mol Pathol. 2015;98(3):502–9.CrossRefGoogle Scholar
  81. 81.
    Bonnier F, Knief P, Lim B, Meade AD, Dorney J, Bhattacharya K, et al. Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst. 2010;135(12):3169–77.CrossRefGoogle Scholar
  82. 82.
    Notingher I, Verrier S, Haque S, Polak JM, Hench LL. Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers. 2003;72(4):230–40.CrossRefGoogle Scholar
  83. 83.
    Swain RJ, Kemp SJ, Goldstraw P, Tetley TD, Stevens MM. Assessment of cell line models of primary human cells by Raman spectral phenotyping. Biophys J. 2010;98(8):1703–11.CrossRefGoogle Scholar
  84. 84.
    Li J, Strong R, Trevisan J, Fogarty SW, Fullwood NJ, Jones KC, et al. Dose-related alterations of carbon nanoparticles in mammalian cells detected using biospectroscopy: potential for real-world effects. Environ Sci Technol. 2013;47(17):10005–11.CrossRefGoogle Scholar
  85. 85.
    Li J, Ying GG, Jones KC, Martin FL. Real-world carbon nanoparticle exposures induce brain and gonadal alterations in zebrafish (Danio rerio) as determined by biospectroscopy techniques. Analyst. 2015;140(8):2687–95.CrossRefGoogle Scholar
  86. 86.
    Rhiem S, Riding MJ, Baumgartner W, Martin FL, Semple KT, Jones KC, et al. Interactions of multiwalled carbon nanotubes with algal cells: quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environ Pollut. 2015;196:431–9.CrossRefGoogle Scholar
  87. 87.
    Draux F, Jeannesson P, Beljebbar A, Tfayli A, Fourre N, Manfait M, et al. Raman spectral imaging of single living cancer cells: a preliminary study. Analyst. 2009;134(3):542–8.CrossRefGoogle Scholar
  88. 88.
    Miljkovic M, Chernenko T, Romeo MJ, Bird B, Matthaus C, Diem M. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst. 2010;135(8):2002–13.CrossRefGoogle Scholar
  89. 89.
    Byrne HJ, Sockalingum GD, Stone N. Chapter 4 Raman microscopy: complement or competitor? Biomedical applications of synchrotron infrared microspectroscopy: a practical approach. The Royal Society of Chemistry; 2011. pp. 105–43.Google Scholar
  90. 90.
    Knief P, Clarke C, Herzog E, Davoren M, Lyng FM, Meade AD, et al. Raman spectroscopy - a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity. Analyst. 2009;134(6):1182–91.CrossRefGoogle Scholar
  91. 91.
    Estrela-Lopis I, Romero G, Rojas E, Moya SE, Donath E. Nanoparticle uptake and their co-localization with cell compartments – a confocal Raman microscopy study at single cell level. J Phys Conf Ser. 2011;304(1):012017.CrossRefGoogle Scholar
  92. 92.
    Bankapur A, Krishnamurthy RS, Zachariah E, Santhosh C, Chougule B, Praveen B, et al. Micro-Raman spectroscopy of silver nanoparticle induced stress on optically-trapped stem cells. PLoS One. 2012;7(4):e35075.CrossRefGoogle Scholar
  93. 93.
    Ahlinder L, Ekstrand-Hammarström B, Geladi P, Österlund L. Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Biophys J. 2013;105(2):310–9.CrossRefGoogle Scholar
  94. 94.
    Efeoglu E, Casey A, Byrne HJ. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst. 2017;142(20):3848–56.CrossRefGoogle Scholar
  95. 95.
    Efeoglu E, Maher MA, Casey A, Byrne HJ. Identification of cell death mechanisms based on Raman spectral markers of cyto-/geno-toxicity: comparative study of polyamidoamine dendrimers and aminated polystyrene nanoparticles. J Biophotonics. 2017; Submitted.Google Scholar
  96. 96.
    Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface. 2013;10(82):20120939.CrossRefGoogle Scholar
  97. 97.
    Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.CrossRefGoogle Scholar
  98. 98.
    Mukherjee SP, Lyng FM, Garcia A, Davoren M, Byrne HJ. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol. 2010;248(3):259–68.CrossRefGoogle Scholar
  99. 99.
    Maher MA, Byrne HJ. Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles. Anal Bioanal Chem. 2016;408(19):5295–307.CrossRefGoogle Scholar
  100. 100.
    Dendritech I. PAMAM Dendrimers. 2017. Accessed August 2017.
  101. 101.
    OECD. Adverse Outcome Pathways, Molecular Screening and Toxicogenomics. Accessed August 2017.
  102. 102.
    Maher MA, Naha PC, Mukherjee SP, Byrne HJ. Numerical simulations of in vitro nanoparticle toxicity – the case of poly(amido amine) dendrimers. Toxicol in Vitro. 2014;28(8):1449–60.CrossRefGoogle Scholar
  103. 103.
    Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices. 2006;3(2):215–34.CrossRefGoogle Scholar
  104. 104.
    Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.CrossRefGoogle Scholar
  105. 105.
    Small EW, Peticolas WL. Conformational dependence of the Raman scattering intensities from polynucleotides. Biopolymers. 1971;10(1):69–88.CrossRefGoogle Scholar
  106. 106.
    Thomas GJ, Medeiros GC, Hartman KA. The dependence of raman scattering on the conformation of ribosomal RNA. Biochem Biophys Res Commun. 1971;44(3):587–92.CrossRefGoogle Scholar
  107. 107.
    Kurzątkowska K, Santiago T, Hepel M. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery. Biosens Bioelectron. 2017;91:780–7.CrossRefGoogle Scholar
  108. 108.
    Santiago T, DeVaux RS, Kurzatkowska K, Espinal R, Herschkowitz JI, Hepel M. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. Int J Nanomedicine. 2017;12:7763–76.CrossRefGoogle Scholar
  109. 109.
    Stobiecka M, Dworakowska B, Jakiela S, Lukasiak A, Chalupa A, Zembrzycki K. Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons. Sensors Actuators B Chem. 2016;235:136–45.CrossRefGoogle Scholar
  110. 110.
    Smith M, Hepel M. Controlled release of targeted anti-leukemia drugs azacitidine and decitabine monitored using surface-enhanced Raman scattering (SERS) spectroscopy. Mediterr J Chem. 2017;6(4):125–32.CrossRefGoogle Scholar
  111. 111.
    Chon H, Lee S, Son SW, Oh CH, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced raman scattering of hollow gold nanospheres. Anal Chem. 2009;1(8):3029–34.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Esen Efeoglu
    • 1
    • 2
  • Marcus A. Maher
    • 2
  • Alan Casey
    • 1
    • 2
  • Hugh J. Byrne
    • 2
  1. 1.School of PhysicsDublin Institute of TechnologyDublin 2Ireland
  2. 2.FOCAS Research InstituteDublin Institute of TechnologyDublin 2Ireland

Personalised recommendations