Skip to main content
Log in

Label-free screening of foodborne Salmonella using surface plasmon resonance imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is estimated that 95% of the foodborne infections are caused by 15 major pathogens. Therefore, rapid and effective multiplex screening techniques for these pathogens with improved efficiencies could benefit public health at lower costs. Surface plasmon resonance imaging (SPRi) provides a label-free, multiplex analytical platform for pathogen screening. In this study, we have developed a singleplex immunoassay for Salmonella to evaluate the potential of SPRi in pathogen detection. Anti-Salmonella and control ligands were arrayed onto the SPRi sensor chip in a microarray format. The influences of ligand immobilization pH and concentration were optimized, and a pause flow protocol was adopted to improve assay rapidity and sensitivity. The method shows good specificity against 6 non-Salmonella species and was able to detect 5 of 6 Salmonella serotypes, including 3 serotypes most frequently associated with outbreaks. Limits of detection were found to be 2.1 × 106 CFU/mL in phosphate-buffered saline and 7.6 × 106 CFU/mL in the presence of chicken rinse matrix with 8.9 × 107 CFU/mL of indigenous microflora. The condition of antibody array regeneration was optimized for sequential sample injections. Finally, the SPRi immunoassay was used to detect Salmonella directly from artificially spiked chicken carcass rinse samples. As low as 6.8 CFU/mL of Salmonella could be detected after overnight enrichment in buffered peptone water, demonstrating the potential in streamlined pathogen screening with minimal sample preparation and without detection labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis. 2011;17:16–22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011;17:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hoffmann S, Maculloch B, Batz M. Economic burden of major foodborne illnesses acquired in the United States. USDA, ERS. 2015. https://www.ers.usda.gov/webdocs/publications/43984/52807_eib140.pdf?v=42136. Accessed 20 Sep 2017.

  4. Scharff RL. State estimates for the annual cost of foodborne illness. J Food Protect. 2015;78:1064–71.

    Article  Google Scholar 

  5. Suo B, He Y, Paoli G, Gehring A, S-I T, Shi X. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes. 2010;24:77–86.

    Article  CAS  PubMed  Google Scholar 

  6. Wang RF, Cao WW, Cerniglia CE. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol. 1997;83:727–36.

    Article  CAS  PubMed  Google Scholar 

  7. Anonymous. Microbiology Laboratory Guidebook. USDA-FSIS. 2015. http://www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guidebooks-and-methods/microbiology-laboratory-guidebook/microbiology-laboratory-guidebook. Accessed 20 Sep 2017.

  8. Gehring AG, Tu S-I. High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem. 2011;4:151–72.

    Article  CAS  Google Scholar 

  9. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13:559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudak FC, Boyacı İH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4:1003–11.

    Article  CAS  PubMed  Google Scholar 

  11. Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor Actuat B: Chem. 2007;121:158–77.

    Article  CAS  Google Scholar 

  12. Fratamico PM, Strobaugh TP, Medina MB, Gehring AG. Detection of Escherichia coli O157 : H7 using a surface plasmon resonance biosensor. Biotechnol Tech. 1998;12:571–6.

    Article  CAS  Google Scholar 

  13. Mazumdar SD, Hartmann M, Kämpfer P, Keusgen M. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosens Bioelectron. 2007;22:2040–6.

    Article  CAS  PubMed  Google Scholar 

  14. Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholomew D, Elkind J, et al. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron. 2002;17:573–84.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang D, Yan Y, Li Q, Yu T, Cheng W, Wang L, et al. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor. J Biotechnol. 2012;160:123–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kai E, Ikebukuro K, Hoshina S, Watanabe H, Karube I. Detection of PCR products of Escherichia coli O157:H7 in human stool samples using surface plasmon resonance (SPR). FEMS Immunol Med Mic. 2000;29:283–8.

    Article  CAS  Google Scholar 

  17. Subramanian A, Irudayaraj J, Ryan T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157: H7. Biosens Bioelectron. 2006;21:998–1006.

    Article  CAS  PubMed  Google Scholar 

  18. Waswa J, Irudayaraj J, DebRoy C. Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. Lwt-Food Sci Technol. 2007;40:187–92.

    Article  CAS  Google Scholar 

  19. Waswa JW, Debroy C, Irudayaraj J. Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J Food Process Eng. 2006;29:373–85.

    Article  Google Scholar 

  20. BK O, Kim YK, Park KW, Lee WH, Choi JW. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens Bioelectron. 2004;19:1497–504.

    Article  CAS  Google Scholar 

  21. Oh BK, Lee W, Chun BS, Bae YM, Lee WH, Choi JW. Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica. Colloid Surface A. 2005;257-58:369–74.

    Article  CAS  Google Scholar 

  22. Oh BK, Lee W, Kim YK, Lee WH, Choi JW. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol. 2004;111:1–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dudak FC, Boyacı İH. Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res Int. 2007;40:803–7.

    Article  CAS  Google Scholar 

  24. Lan Y-B, Wang S-Z, Yin Y-G, Hoffmann WC, Zheng X-Z. Using a surface plasmon resonance biosensor for rapid detection of Salmonella Typhimurium in chicken carcass. J Bionic Eng. 2008;5:239–46.

    Article  Google Scholar 

  25. Vaisocherová-Lísalová H, Víšová I, Ermini ML, Špringer T, Song XC, Mrázek J, et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 2006;22:752–8.

    Article  CAS  PubMed  Google Scholar 

  27. Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M. Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal Bioanal Chem. 2015;407:5541–5.

    Article  CAS  PubMed  Google Scholar 

  28. Aura AM, D'Agata R, Spoto G. Ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. ChemistrySelect. 2017;2:7024–30.

    Article  CAS  Google Scholar 

  29. Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona MG, Durmort C, et al. On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip. 2013;13:4024–32.

    Article  CAS  PubMed  Google Scholar 

  30. Yamasaki T, Miyake S, Nakano S, Morimura H, Hirakawa Y, Nagao M, et al. Development of a surface plasmon resonance-based immunosensor for detection of 10 major O-antigens on Shiga toxin-producing Escherichia coli, with a gel displacement technique to remove bound bacteria. Anal Chem. 2016;88:6711–7.

    Article  CAS  PubMed  Google Scholar 

  31. Mondani L, Delannoy S, Mathey R, Piat F, Mercey T, Slimani S, et al. Fast detection of both O157 and non-O157 Shiga-toxin producing Escherichia coli by real-time optical immunoassay. Lett Appl Microbiol. 2016;62:39–46.

    Article  CAS  PubMed  Google Scholar 

  32. Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem. 1990;185:131–5.

    Article  CAS  PubMed  Google Scholar 

  33. Anonymous. Crosslinking technical handbook. Thermo Fisher Scientific. https://tools.thermofisher.com/content/sfs/brochures/1602163-Crosslinking-Reagents-Handbook.pdf. Accessed 14 Sep 2017.

  34. de Oliveira MMM, Brugnera DF, Alves E, Piccoli RH. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Braz J Microbiol. 2010;41:97–106.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mafu AA, Roy D, Goulet J, Magny P. Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J Food Protect. 1990;53:742–6.

    Article  CAS  Google Scholar 

  36. Bretscher MS. Recap on cell migration. Traffic. 2008;9:198–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maier RM. Bacterial growth. In: Pepper IL, Gerba CP, Gentry TJ, editors. Environmental microbiology. 3rd ed. San Diego: Academic Press; 2015. p. 37–56.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Marinella Sandros, Dr. Fatima Hibti, and Dr. Chiraz Frydman for their helpful discussions and Dr. Nasreen Bano for the maintenance and preparation of bacterial culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosoon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Food Safety Analysis with guest editor Steven J. Lehotay.

Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Electronic supplementary material

ESM 1

(PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Park, B. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Anal Bioanal Chem 410, 5455–5464 (2018). https://doi.org/10.1007/s00216-017-0810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0810-z

Keywords

Navigation