Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 6, pp 1679–1688 | Cite as

An immunocapture-LC-MS-based assay for serum SPINK1 allows simultaneous quantification and detection of SPINK1 variants

  • Suvi Ravela
  • Leena Valmu
  • Mykola Domanskyy
  • Hannu Koistinen
  • Leena Kylänpää
  • Outi Lindström
  • Jakob Stenman
  • Esa Hämäläinen
  • Ulf-Håkan Stenman
  • Outi Itkonen
Research Paper

Abstract

Pancreatic secretory trypsin inhibitor Kazal type 1 (SPINK1) is a 6420 Da peptide produced by the pancreas, but also by several other tissues and many tumors. Some mutations of the SPINK1 gene, like the one causing amino acid change N34S, have been shown to confer susceptibility to recurrent or chronic pancreatitis. Detection of such variants are therefore of clinical utility. So far SPINK1 variants have been determined by DNA techniques. We have developed and validated an immunocapture-liquid chromatography-mass spectrometric (IC-LC-MS) assay for the detection and quantification of serum SPINK1, N34S-SPINK1, and P55S-SPINK1. We compared this method with a time-resolved immunofluorometric assay (TR-IFMA) for serum samples and primer extension analysis of DNA samples. We used serum and DNA samples from patients with acute pancreatitis, renal cell carcinoma, or benign urological conditions. With the help of a zygosity score calculated from the respective peak areas using the formula wild-type (wt) SPINK1/(variant SPINK1 + wt SPINK1), we were able to correctly characterize the heterozygotes and homozygotes from the samples with DNA information. The score was then used to characterize the apparent zygosity of the samples with no DNA characterization. The IC-LC-MS method for SPINK1 was linear over the concentration range 0.5–1000 μg/L. The limit of quantitation (LOQ) was 0.5 μg/L. The IC-LC-MS and the TR-IFMA assays showed good correlation. The median zygosity score was 1.00 (95% CI 0.98–1.01, n = 11), 0.55 (95% CI 0.43–0.61, n = 14), and 0.05 (range 0.04–0.07, n = 3) for individuals found to be wt, heterozygous, and homozygous, respectively, for the N34S-SPINK1 variant by DNA analysis. When DNA samples are not available, this assay facilitates identification of the N34S- and P55S-SPINK1 variants also in archival serum samples.

Keywords

Immunocapture TATI SPINK1 Quantitative LC-MS assay 

Notes

Acknowledgements

The authors thank Ms. Maarit Leinimaa and Ms. Marianne Niemelä for expert technical assistance. This work was supported by the grants from the Academy of Finland, Finska läkaresällskapet, Sigrid Jusélius Foundation, Medical Faculty of the University of Helsinki, Biomedicum Helsinki Foundation, and Timo Lehtonen Urology Fund.

Compliance with ethical standards

S. Ravela and L. Valmu work currently at ThermoFisher Scientific, but S. Ravela was a University of Helsinki employee and L. Valmu was a Finnish Red Cross employee at the time of the study. ThermoFisher Scientific has not participated nor supported this study. The authors have no other conflict of interests.

The study was approved by the ethical committee of Helsinki University Central Hospital, Finland. Informed consent was obtained from all individuals.

References

  1. 1.
    Pubols MH, Bartelt DC, Greene LJ. Trypsin inhibitor from human pancreas and pancreatic juice. J Biol Chem. 1974:2235–42.Google Scholar
  2. 2.
    Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci. 1986;31:314–21.CrossRefGoogle Scholar
  3. 3.
    Lukkonen A, Lintula S, von Boguslawski K, Carpen O, Ljungberg B, Landberg G, et al. Tumor-associated trypsin inhibitor in normal and malignant renal tissue and in serum of renal-cell carcinoma patients. Int J Cancer. 1999:486–90.Google Scholar
  4. 4.
    Paju A, Hotakainen K, Cao Y, Laurila T, Gadaleanu V, Hemminki A, et al. Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate cancer and in androgen-independent 22Rv1 cells. Eur Urol. 2007;Google Scholar
  5. 5.
    Freeman TC, Playford RJ, Quinn C, Beardshall K, Poulter L, Young J, et al. Pancreatic secretory trypsin inhibitor in gastrointestinal mucosa and gastric juice. Gut. 1990:1318–23.Google Scholar
  6. 6.
    Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta. 2014:260–9.Google Scholar
  7. 7.
    Stenman UH, Huhtala ML, Koistinen R, Seppala M. Immunochemical demonstration of an ovarian cancer-associated urinary peptide. Int J Cancer. 1982:53–7.Google Scholar
  8. 8.
    Hedstrom J, Sainio V, Kemppainen E, Puolakkainen P, Haapiainen R, Kivilaakso E, et al. Urine trypsinogen-2 as marker of acute pancreatitis. Clin Chem. 1996:685–90.Google Scholar
  9. 9.
    Kylanpaa-Back ML, Kemppainen E, Puolakkainen P, Hedstrom J, Haapiainen R, Korvuo A, et al. Comparison of urine trypsinogen-2 test strip with serum lipase in the diagnosis of acute pancreatitis. Hepato-Gastroenterology. 2002:1130–4.Google Scholar
  10. 10.
    Eddeland A, Ohlsson KA. Radioimmunoassay for measurement of human pancreatic secretory trypsin inhibitor in different body fluids. Hoppe Seylers Z Physiol Chem. 1978:671–5.Google Scholar
  11. 11.
    Satake K, Inui A, Sogabe T, Yoshii Y, Nakata B, Tanaka H, et al. The measurement of serum immunoreactive pancreatic secretory trypsin inhibitor in gastrointestinal cancer and pancreatic disease. Int J Pancreatol. 1988:323–31.Google Scholar
  12. 12.
    Lasson A, Borgstrom A, Ohlsson K. Serum levels of immunoreactive PSTI in acute abdominal disorders, with special reference to a possible extrapancreatic PSTI production. Clin Chim Acta. 1986:37–46.Google Scholar
  13. 13.
    Chen JM, Mercier B, Audrezet MP, Ferec C. Mutational analysis of the human pancreatic secretory trypsin inhibitor (PSTI) gene in hereditary and sporadic chronic pancreatitis. J Med Genet. 2000:67–9.Google Scholar
  14. 14.
    Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000:213–6.Google Scholar
  15. 15.
    Pfutzer RH, Barmada MM, Brunskill AP, Finch R, Hart PS, Neoptolemos J, et al. SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology. 2000:615–23.Google Scholar
  16. 16.
    Lempinen M, Paju A, Kemppainen E, Smura T, Kylanpaa ML, Nevanlinna H, et al. Mutations N34S and P55S of the SPINK1 gene in patients with chronic pancreatitis or pancreatic cancer and in healthy subjects: a report from Finland. Scand J Gastroenterol. 2005;40:225–30.CrossRefGoogle Scholar
  17. 17.
    Schneider A. Serine protease inhibitor kazal type 1 mutations and pancreatitis. Clin Lab Med. 2005;25:61–78.CrossRefGoogle Scholar
  18. 18.
    Gomez-Lira M, Bonamini D, Castellani C, Unis L, Cavallini G, Assael BM, et al. Mutations in the SPINK1 gene in idiopathic pancreatitis Italian patients. Eur J Hum Genet. 2003;11:543–6.CrossRefGoogle Scholar
  19. 19.
    Threadgold J, Greenhalf W, Ellis I, Howes N, Lerch MM, Simon P, et al. The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut. 2002;50:675–81.CrossRefGoogle Scholar
  20. 20.
    Aoun E, Chang CC, Greer JB, Papachristou GI, Barmada MM, Whitcomb DC. Pathways to injury in chronic pancreatitis: decoding the role of the high-risk SPINK1 N34S haplotype using meta-analysis. PLoS One. 2008:e2003.Google Scholar
  21. 21.
    Tukiainen E, Kylanpaa ML, Kemppainen E, Nevanlinna H, Paju A, Repo H, et al. Pancreatic secretory trypsin inhibitor (SPINK1) gene mutations in patients with acute pancreatitis. Pancreas. 2005;30:239–42.CrossRefGoogle Scholar
  22. 22.
    O'Reilly DA, Witt H, Rahman SH, Schulz HU, Sargen K, Kage A, et al. The SPINK1 N34S variant is associated with acute pancreatitis. Eur J Gastroenterol Hepatol. 2008:726–31.Google Scholar
  23. 23.
    Kuwata K, Hirota M, Shimizu H, Nakae M, Nishihara S, Takimoto A, et al. Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. J Gastroenterol. 2002:928–34.Google Scholar
  24. 24.
    Kiraly O, Wartmann T, Sahin-Toth M. Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut. 2007:1433–8.Google Scholar
  25. 25.
    Boulling A, Le Marechal C, Trouve P, Raguenes O, Chen JM, Ferec C. Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur J Hum Genet. 2007:936–42.Google Scholar
  26. 26.
    Bohe H, Bohe M, Jonsson P, Lindstrom C, Ohlsson K. Quantification of pancreatic secretory trypsin inhibitor in colonic carcinoma and normal adjacent colonic mucosa. J Clin Pathol. 1992:1066–9.Google Scholar
  27. 27.
    Kurobe M, Kato A, Takei Y, Hayashi K. Fluorometric enzyme immunoassay of basic fibroblast growth factor with monoclonal antibodies. Clin Chem. 1992:2121–3.Google Scholar
  28. 28.
    Janeiro E, Guimarães J, Stenman U, Catarino M, Itkonen O. Validation and comparison of tumor-associated trypsin inhibitor (TATI) immunoassays. Clin Chim Acta. 2012:1244–8.Google Scholar
  29. 29.
    Osman S, Turpeinen U, Itkonen O, Stenman UH. Optimization of a time-resolved immunofluorometric assay for tumor-associated trypsin inhibitor (TATI) using the streptavidin-biotin system. J Immunol Methods. 1993:97–106.Google Scholar
  30. 30.
    Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Acute pancreatitis classification working group. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013:102–11.Google Scholar
  31. 31.
    Valmu L, Paju A, Lempinen M, Kemppainen E, Stenman UH. Application of proteomic technology in identifying pancreatic secretory trypsin inhibitor variants in urine of patients with pancreatitis. Clin Chem. 2006;52:73–81.CrossRefGoogle Scholar
  32. 32.
    Hemmila I, Dakubu S, Mukkala VM, Siitari H, Lovgren T. Europium as a label in time-resolved immunofluorometric assays. Anal Biochem. 1984:335–43.Google Scholar
  33. 33.
    Tang Z, Wu M, Li Y, Zheng X, Liu H, Cheng X, et al. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography-mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards. Anal Chim Acta. 2013:59–67.Google Scholar
  34. 34.
    Chen Z, Caulfield MP, McPhaul MJ, Reitz RE, Taylor SW, Clarke NJ. Quantitative insulin analysis using liquid chromatography-tandem mass spectrometry in a high-throughput clinical laboratory. Clin Chem. 2013:1349–56.Google Scholar
  35. 35.
    Jeffery J, Mackenzie F, Beckett G, Perry L, Ayling R. Norethisterone interference in testosterone assays. Ann Clin Biochem. 2013;Google Scholar
  36. 36.
    Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, Kopelovich L, et al. Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci U S A. 2011:2444–9.Google Scholar
  37. 37.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003:6940–5.Google Scholar
  38. 38.
    Truninger K, Witt H, Kock J, Kage A, Seifert B, Ammann RW, et al. Mutations of the serine protease inhibitor, Kazal type 1 gene, in patients with idiopathic chronic pancreatitis. Am J Gastroenterol. 2002:1133–7.Google Scholar
  39. 39.
    Pelaez-Luna M, Robles-Diaz G, Canizales-Quinteros S, Tusie-Luna MT. PRSS1 and SPINK1 mutations in idiopathic chronic and recurrent acute pancreatitis. World J Gastroenterol 2014; 11788–11792.Google Scholar
  40. 40.
    Rai P, Sharma A, Gupta A, Aggarwal R. Frequency of SPINK1 N34S mutation in acute and recurrent acute pancreatitis. J Hepatobiliary Pancreat Sci. 2014:663–8.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Suvi Ravela
    • 1
    • 2
  • Leena Valmu
    • 1
    • 2
  • Mykola Domanskyy
    • 1
  • Hannu Koistinen
    • 1
  • Leena Kylänpää
    • 3
  • Outi Lindström
    • 3
  • Jakob Stenman
    • 4
    • 5
  • Esa Hämäläinen
    • 6
  • Ulf-Håkan Stenman
    • 1
    • 6
  • Outi Itkonen
    • 1
    • 6
  1. 1.Department of Clinical ChemistryUniversity of Helsinki and Helsinki University Central HospitalHelsinkiFinland
  2. 2.Thermo Fisher ScientificVantaaFinland
  3. 3.Department of SurgeryHelsinki University Central HospitalHelsinkiFinland
  4. 4.Institute for Molecular Medicine FinlandHelsinkiFinland
  5. 5.Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
  6. 6.HUSLABHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations