Skip to main content
Log in

Evaluating the solvation properties of metal-containing ionic liquids using the solvation parameter model

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquids (IL) have been utilized as gas chromatography stationary phases due to their high thermal stability, negligible vapor pressure, wide liquid range, and the ability to solvate a range of analytes. In this study, the solvation properties of eight room temperature ILs containing various transition and rare earth metal centers [e.g., Mn(II), Co(II), Ni(II), Nd(III), Gd(III), and Dy(III)] are characterized using the Abraham solvation parameter model. These metal-containing ILs (MCILs) consist of the trihexyl(tetradecyl)phosphonium cation and functionalized acetylacetonate ligands chelated to various metals. They are used in this study as gas chromatographic stationary phases to investigate the effect of the metal centers on the separation selectivities for various analytes. In addition, two MCILs comprised of tetrachloromanganate and tris(trifluoromethylphenylacetylaceto)manganate anions were used to study the effect of chelating ligands on the selectivity of the stationary phases. Depending on the metal center and chelating ligand, significant differences in solvation properties were observed. MCILs containing Ni(II) and Mn(II) metal centers exhibited higher retention factors and higher peak asymmetry factors for amines (e.g., aniline and pyridine). Alcohols (e.g., phenol, p-cresol, 1-octanol, and 1-decanol) were strongly retained on the MCIL stationary phase containing Mn(II) and Dy(III) metal centers. This study presents a comprehensive evaluation into how the solvation properties of ILs can be varied by incorporating transition and rare earth metal centers into their structural make-up. In addition, it provides insight into how these new classes of ILs can be used for solute-specific gas chromatographic separations.

The solvation properties of eight metal-containing ionic liquids (MCILs) comprised of transition and rare-earth metal centers are evaluated for the first time using gas chromatography. The results reveal that metals comprising the MCILs provide unique separation selectivities for various analytes and that these materials can be exploited as stationary phases in solute-specific gas chromatographic separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hallett JP, Welton T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem Rev. 2011;111(5):3508–76.

    Article  CAS  PubMed  Google Scholar 

  2. Siu B, Cassity CG, Benchea A, Hamby T, Hendrich J, Strickland KJ, et al. Thermally robust: triarylsulfonium ionic liquids stable in air for 90 days at 300 °C. RSC Adv. 2017;7(13):7623–30.

    Article  CAS  Google Scholar 

  3. Yao C, Anderson JL. Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases. J Chromatogr A. 2009;1216(10):1658–712.

    Article  CAS  PubMed  Google Scholar 

  4. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, et al. Novel brønsted acidic ionic liquids and their use as dual solvent−catalysts. J Am Chem Soc. 2002;124(21):5962–3.

    Article  CAS  PubMed  Google Scholar 

  5. Xiao J-C, Shreeve JM. Synthesis of 2,2′-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem. 2005;70(8):3072–8.

    Article  CAS  PubMed  Google Scholar 

  6. Joshi MD, Ho TD, Cole WTS, Anderson JL. Determination of polychlorinated biphenyls in ocean water and bovine milk using crosslinked polymeric ionic liquid sorbent coatings by solid-phase microextraction. Talanta. 2014;118:172–9.

    Article  CAS  PubMed  Google Scholar 

  7. Huang J-F, Luo H, Liang C, Jiang D-E, Dai S. Advanced liquid membranes based on novel ionic liquids for selective separation of olefin/paraffin via olefin-facilitated transport. Ind Eng Chem Res. 2008;47(3):881–8.

    Article  CAS  Google Scholar 

  8. Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P. Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chromatogr A. 2012;1268:130–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem. 2011;3(20):7947–54.

    Article  CAS  Google Scholar 

  10. Frink LA, Armstrong DW. Determination of trace water content in petroleum and petroleum products. Anal Chem. 2016;88(16):8194–201.

    Article  CAS  PubMed  Google Scholar 

  11. Poole CF, Lenca N. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J Chromatogr A. 2014;1357:87–109.

    Article  CAS  PubMed  Google Scholar 

  12. Poole CF, Poole SK. Separation characteristics of wall-coated open-tubular columns for gas chromatography. J Chromatogr A. 2008;1184(1–2):254–80.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Ingram IC, Hantao LW, Anderson JL. Identifying important structural features of ionic liquid stationary phases for the selective separation of nonpolar analytes by comprehensive two-dimensional gas chromatography. J Chromatogr A. 2015;1386:89–97.

    Article  CAS  PubMed  Google Scholar 

  14. Yu H, Merib J, Anderson J. Faster dispersive liquid–iquid microextraction methods using magnetic ionic liquids as solvents. J Chromatogr A. 2016;1463:11–9.

    Article  CAS  PubMed  Google Scholar 

  15. Clark KD, Purslow JA, Pierson SA, Nacham O, Anderson JL. Rapid preconcentration of viable bacteria using magnetic ionic liquids for PCR amplification and culture-based diagnostics. Anal Bioanal Chem. 2017;409(21):4983–91.

    Article  CAS  PubMed  Google Scholar 

  16. Chisvert A, Benedé JL, Anderson JL, Pierson SA, Salvador A. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Anal Chim Acta. 2017;983:130–40.

    Article  CAS  PubMed  Google Scholar 

  17. Bradford BW, Harvey D, Chalkley DE. The chromatographic analysis of hydrocarbon mixtures. J Inst Pet. 1955;41:80–91.

    CAS  Google Scholar 

  18. Hanneman WW. Gas chromatographic separation of heterocyclic nitrogen compounds on an inorganic salt column. J Chromatogr Sci. 1963;1(12):18.

    Article  CAS  Google Scholar 

  19. Rodinkov OV, Zhuravleva GA, Moskvin LN. Influence of modifying cobalt(II) chloride additive on the selectivity of stationary phases in gas chromatography. J Anal Chem. 2016;71(10):1046–51.

    Article  CAS  Google Scholar 

  20. Wasiak W, Rykowska I. Chemically bonded chelates as selective complexing sorbents for gas chromatography IV. Silica surfaces modified with Co(II) and Ni(II) complexes. J Chromatogr A. 1996;723(2):313–24.

    Article  CAS  Google Scholar 

  21. Wasiak W, Rykowska I. Chemically bonded chelates as selective complexing sorbents for gas chromatography: VI1. Modification of silica with NiCl2 and CoCl2 via β-diketonate groups. J Chromatogr A. 1997;773(1/2):209–17.

    Article  CAS  Google Scholar 

  22. Wasiak W, Rykowska I. Charge-transfer interactions between nucleophilic compounds and chromatographic packings containing chemically bonded Cu(II) complexes. Chromatographia. 1998;48(3):284–92.

    Article  CAS  Google Scholar 

  23. Bielecki P, Wasiak W. Cyclam complexes of Cu(II) and Co(II) as stationary phases for gas chromatography. J Chromatogr A. 2010;1217(27):4648–54.

    Article  CAS  PubMed  Google Scholar 

  24. Schurig V, Bear JL, Zlatkis A. Rhodium (II) carboxylates as new selective stationary phases in gas-liquid chromatography. Chromatographia. 1972;5(12):301–4.

    Article  CAS  Google Scholar 

  25. Kraitr M, Komers R, Cuta F. Separation of hexenes by gas-chromatography on stationary phases with Pdci2. Collect Czech Chem C. 1974;39(6):1440–6.

    Article  CAS  Google Scholar 

  26. Gil-Av E, Herling J, Shabtai J. Gas liquid partition chromatography of mixtures of methylenecyclohexane and the isomeric methylcyclohexenes. J Chromatogr. 1958;1:508–12.

    Article  Google Scholar 

  27. Wishousky TI, Grob RI, Zacchei AG. Precautions in preparing whisker-walled open tubular columns. J Chromatogr A. 1982;249(1):155–62.

    Article  CAS  Google Scholar 

  28. Wishousky TI, Grob RL, Zacchei AG. Investigation of whisker-walled open tubular columns coated with manganese(II) chloride and cobalt(II) chloride. J Chromatogr A. 1982;249(1):1–18.

    Article  CAS  Google Scholar 

  29. Rykowska I, Wasiak W. Recent advances in gas chromatography for solid and liquid stationary phases containing metal ions. J Chromatogr A. 2009;1216(10):1713–22.

    Article  CAS  PubMed  Google Scholar 

  30. Dhanesar SC, Coddens ME, Poole CF. Influence of phase loading on the performance of whisker-walled open tubular columns coated with organic molten salts. J Chromatogr A. 1985;324:415–21.

    Article  CAS  Google Scholar 

  31. Poole CF, Furton KG, Kersten BR. Liquid organic salt phases for gas chromatography. J Chromatogr Sci. 1986;24(9):400–9.

    Article  CAS  Google Scholar 

  32. Poole SK, Shetty PH, Poole CF. Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal Chim Acta. 1989;218:241–64.

    Article  CAS  Google Scholar 

  33. Wawrzyniak R, Wasiak W. Synthesis and properties of mercaptosilicone modified by Ni(II) and Co(II) as stationary phases for capillary complexation gas chromatography. Anal Chim Acta. 1998;377(1):61–70.

    Article  CAS  Google Scholar 

  34. Wawrzyniak R, Wasiak W. Capillary complexation gas chromatography in analysis of cyclic and aromatic hydrocarbons. Chromatographia. 2000;51(1):S267–73.

    Article  CAS  Google Scholar 

  35. Pierson SA, Nacham O, Clark KD, Nan H, Mudryk Y, Anderson JL. Synthesis and characterization of low viscosity hexafluoroacetylacetonate-based hydrophobic magnetic ionic liquids. New J Chem. 2017;41(13):5498–505.

    Article  CAS  Google Scholar 

  36. Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22(2):73–83.

    Article  CAS  Google Scholar 

  37. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. J Chem Soc, Perkin Trans. 1994;2(8):1777–91.

    Article  Google Scholar 

  38. Acree WE, Abraham MH. The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J Chem Technol Biotechnol. 2006;81(8):1441–6.

    Article  CAS  Google Scholar 

  39. Breitbach ZS, Armstrong DW. Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem. 2008;390(6):1605–17.

    Article  CAS  PubMed  Google Scholar 

  40. Hantao LW, Najafi A, Zhang C, Augusto F, Anderson JL. Tuning the selectivity of ionic liquid stationary phases for enhanced separation of nonpolar analytes in kerosene using multidimensional gas chromatography. Anal Chem. 2014;86(8):3717–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Chemical Measurement and Imaging Program at the National Science Foundation (grant number CHE-1709372). Stephen Pierson and Gabriel Odugbesi are acknowledged for their assistance in the preparation of MCILs and coated capillary columns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared L. Anderson.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, H., Peterson, L. & Anderson, J.L. Evaluating the solvation properties of metal-containing ionic liquids using the solvation parameter model. Anal Bioanal Chem 410, 4597–4606 (2018). https://doi.org/10.1007/s00216-017-0802-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0802-z

Keywords

Navigation