In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe

  • Jing Zhang
  • Lijia Liang
  • Xin Guan
  • Rong Deng
  • Huixin Qu
  • Dianshuai Huang
  • Shuping Xu
  • Chongyang Liang
  • Weiqing Xu
Research Paper
  • 74 Downloads

Abstract

A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2′-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles.

Graphical abstract

A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS

Keywords

Surface-enhanced Raman scattering Interior label Intranuclear detection Cell nucleus Nondestructive 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21373096, 21573087, 21573092, 91441105, and 31271478) and Science and Technology Development plan of Jilin Province in China (20150203013GX).

Compliance with ethical standards

Conflict of interest

The authors declare that they have neither financial nor nonfinancial conflicts of interest.

Ethics

Breast cancer cells (MCF-7) belong to cell line and we bought this cell line from Shanghai ATCC cell gank, which granted the permission of the Human Research Ethics Committee of the country for manipulations of human cells.

Supplementary material

216_2017_761_MOESM1_ESM.pdf (448 kb)
ESM 1(PDF 448 kb)

References

  1. 1.
    Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226:466–8.CrossRefGoogle Scholar
  2. 2.
    Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ, et al. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater. 2009;19:3580–9.CrossRefGoogle Scholar
  3. 3.
    Fan WP, Shen B, Bu WB, Zheng XP, He QJ, Cui ZW, et al. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chem Sci. 2015;6:1747–53.CrossRefGoogle Scholar
  4. 4.
    Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.CrossRefGoogle Scholar
  5. 5.
    Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, et al. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials. 2015;69:89–98.CrossRefGoogle Scholar
  6. 6.
    Cheng J, Xie X. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350:aaa8870.CrossRefGoogle Scholar
  7. 7.
    Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.CrossRefGoogle Scholar
  8. 8.
    Taketani A, Hariyani R, Ishigaki M, Andriana BB, Sato H. Raman endoscopy for the in situ investigation of advancing colorectal tumors in live model mice. Analyst. 2013;138:4183–90.CrossRefGoogle Scholar
  9. 9.
    Li H, Wang H, Huang D, Liang L, Gu Y, Liang C, et al. Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Rev Sci Instrum. 2014;85:056109.CrossRefGoogle Scholar
  10. 10.
    Panikkanvalappil SR, Hira SM, Mahmoud MA, El-Sayed MA. Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy. J Am Chem Soc. 2014;136:15961–8.CrossRefGoogle Scholar
  11. 11.
    Kang B, Austin LA, El-Sayed MA. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. ACS Nano. 2014;8:4883–92.CrossRefGoogle Scholar
  12. 12.
    Austin LA, Kang B, El-Sayed MA. A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J Am Chem Soc. 2013;135:4688–91.CrossRefGoogle Scholar
  13. 13.
    Aioub M, El-Sayed MA. A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc. 2016;138:1258–64.CrossRefGoogle Scholar
  14. 14.
    Liang L, Huang D, Wang H, Li H, Xu S, Chang Y, et al. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Anal Chem. 2015;87:2504–10.CrossRefGoogle Scholar
  15. 15.
    Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D, et al. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal Chem. 2017;89:2844–51.CrossRefGoogle Scholar
  16. 16.
    Yamakoshi H, Dodo K, Okada M, Ando J, Palonpon A, Fujita K, et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J Am Chem Soc. 2011;133:6102–5.CrossRefGoogle Scholar
  17. 17.
    Wei L, Hu F, Shen Y, Chen Z, Yu Y, Lin CC, et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat Methods. 2014;11:410–2.CrossRefGoogle Scholar
  18. 18.
    Yamakoshi H, Dodo K, Palonpon A, Ando J, Fujita K, Kawata S, et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J Am Chem Soc. 2012;134:20681–9.CrossRefGoogle Scholar
  19. 19.
    Lin L, Tian X, Hong S, Dai P, You Q, Wang R, et al. A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells. Angew Chem Int Ed. 2013;52:7266–71.CrossRefGoogle Scholar
  20. 20.
    Chen Y, Ren JQ, Zhang XG, Wu DY, Shen AG, Hu JM. Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging. Anal Chem. 2016;88:6115–9.CrossRefGoogle Scholar
  21. 21.
    Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. PNAS. 2008;105:2415–20.CrossRefGoogle Scholar
  22. 22.
    Huefner A, Kuan WL, Barker RA, Mahajan S. Intracellular SERS nanoprobes for distinction of different neuronal cell types. Nano Lett. 2013;13:2463–70.CrossRefGoogle Scholar
  23. 23.
    Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132:1517–9.CrossRefGoogle Scholar
  24. 24.
    Pante N, Kann M. Nuclear pore complex is able to transport macromolecules with diameters of similar to 39 nm. Mol Biol Cell. 2002;13:425–34.CrossRefGoogle Scholar
  25. 25.
    Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc. 2003;125:4700–1.CrossRefGoogle Scholar
  26. 26.
    Joo S-W, Kim K. Adsorption of phenylacetylene on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J Raman Spectrosc. 2004;35:549–54.CrossRefGoogle Scholar
  27. 27.
    Kennedy DC, McKay CS, Tay LL, Rouleau Y, Pezacki JP. Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells. Chem Commun. 2011;47:3156–8.CrossRefGoogle Scholar
  28. 28.
    Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, Fujita K, et al. Alkyne-tag SERS screening and identification of small-molecule-binding sites in protein. J Am Chem Soc. 2016;138:13901–10.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jing Zhang
    • 1
  • Lijia Liang
    • 1
  • Xin Guan
    • 2
  • Rong Deng
    • 1
  • Huixin Qu
    • 2
  • Dianshuai Huang
    • 2
  • Shuping Xu
    • 1
  • Chongyang Liang
    • 2
  • Weiqing Xu
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchunChina
  2. 2.Institute of Frontier Medical ScienceJilin UniversityChangchunChina

Personalised recommendations