Skip to main content

Advertisement

Log in

Microfluidic systems for studying dynamic function of adipocytes and adipose tissue

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent breakthroughs in organ-on-a-chip and related technologies have highlighted the extraordinary potential for microfluidics to not only make lasting impacts in the understanding of biological systems but also to create new and important in vitro culture platforms. Adipose tissue (fat), in particular, is one that should be amenable to microfluidic mimics of its microenvironment. While the tissue was traditionally considered important only for energy storage, it is now understood to be an integral part of the endocrine system that secretes hormones and responds to various stimuli. As such, adipocyte function is central to the understanding of pathological conditions such as obesity, diabetes, and metabolic syndrome. Despite the importance of the tissue, only recently have significant strides been made in studying dynamic function of adipocytes or adipose tissues on microfluidic devices. In this critical review, we highlight new developments in the special class of microfluidic systems aimed at culture and interrogation of adipose tissue, a sub-field of microfluidics that we contend is only in its infancy. We close by reflecting on these studies as we forecast a promising future, where microfluidic technologies should be capable of mimicking the adipose tissue microenvironment and provide novel insights into its physiological roles in the normal and diseased states.

This critical review focuses on recent developments and challenges in applying microfluidic systems to the culture and analysis of adipocytes and adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocr Metab. 2004;89(6):2548–56.

    Article  CAS  Google Scholar 

  2. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Bio. 2011;12(11):722–34.

    Article  CAS  Google Scholar 

  3. Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie. 2017;136:21–6.

    Article  CAS  Google Scholar 

  4. Shi Y, Burn P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat Rev Drug Discov. 2004;3(8):695–710.

    Article  CAS  Google Scholar 

  5. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  CAS  Google Scholar 

  6. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  Google Scholar 

  7. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746–9.

    Article  CAS  Google Scholar 

  8. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.

    CAS  Google Scholar 

  9. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999;18(17):4633–44.

    Article  CAS  Google Scholar 

  10. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    Article  CAS  Google Scholar 

  11. Wood IS, Wang B, Jenkins JR, Trayhurn P. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFalpha in human adipocytes. Biochem Biophys Res Commun. 2005;337(2):422–9.

    Article  CAS  Google Scholar 

  12. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

    Article  CAS  Google Scholar 

  13. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56(10):2533–40.

    Article  CAS  Google Scholar 

  14. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363–75.

    Article  CAS  Google Scholar 

  15. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 2009;10(3):178–88.

    Article  CAS  Google Scholar 

  16. Chavey C, Lazennec G, Lagarrigue S, Clape C, Iankova I, Teyssier J, et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab. 2009;9(4):339–49.

    Article  CAS  Google Scholar 

  17. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010;329(5990):454–7.

    Article  CAS  Google Scholar 

  18. Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016;165(3):566–79.

    Article  CAS  Google Scholar 

  19. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    Article  CAS  Google Scholar 

  20. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article  CAS  Google Scholar 

  21. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.

    Article  CAS  Google Scholar 

  22. Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35.

    Article  CAS  Google Scholar 

  23. Nechad M, Ruka E, Thibault J. Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp Biochem Physiol Comp Physiol. 1994;107(2):381–8.

    Article  CAS  Google Scholar 

  24. Burysek L, Houstek J. beta-Adrenergic stimulation of interleukin-1alpha and interleukin-6 expression in mouse brown adipocytes. FEBS Lett. 1997;411(1):83–6.

    Article  CAS  Google Scholar 

  25. Asano A, Kimura K, Saito M. Cold-induced mRNA expression of angiogenic factors in rat brown adipose tissue. J Vet Med Sci. 1999;61(4):403–9.

    Article  CAS  Google Scholar 

  26. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85.

    Article  CAS  Google Scholar 

  27. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.

    Article  CAS  Google Scholar 

  28. Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817–24.

    Article  CAS  Google Scholar 

  29. Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4:2019.

    Article  CAS  Google Scholar 

  30. Virtue S, Feldmann H, Christian M, Tan CY, Masoodi M, Dale M, et al. A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization. Diabetes. 2012;61(12):3139–47.

    Article  CAS  Google Scholar 

  31. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012;61(3):674–82.

    Article  CAS  Google Scholar 

  32. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154(8):2687–701.

    Article  CAS  Google Scholar 

  33. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157(6):1279–91.

    Article  CAS  Google Scholar 

  34. Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20(12):1436–43.

    Article  CAS  Google Scholar 

  35. Whittle AJ, Jiang M, Peirce V, Relat J, Virtue S, Ebinuma H, et al. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat Commun. 2015;6:8951.

    Article  CAS  Google Scholar 

  36. Klepac K, Kilic A, Gnad T, Brown LM, Herrmann B, Wilderman A, et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat Commun. 2016;7:10895.

    Article  CAS  Google Scholar 

  37. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, et al. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab. 2016;23(3):454–66.

    Article  CAS  Google Scholar 

  38. Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell. 2016;166(2):424–35.

    Article  CAS  Google Scholar 

  39. Li X, Brooks JC, Hu J, Ford KI, Easley CJ. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling. Lab Chip. 2017;17(2):341–9.

    Article  CAS  Google Scholar 

  40. Loskill P, Sezhian T, Tharp KM, Lee-Montiel FT, Jeeawoody S, Reese WM, et al. WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab Chip. 2017;17(9):1645–54.

    Article  CAS  Google Scholar 

  41. Moraes C, Labuz JM, Leung BM, Inoue M, Chun TH, Takayama S. On being the right size: scaling effects in designing a human-on-a-chip. Integr Biol (Camb). 2013;5(9):1149–61.

    Article  CAS  Google Scholar 

  42. Brooks JC, Judd RL, Easley CJ. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems, vol 1566. Thermogenic Fat. Methods in Molecular biology. New York: Humana Press; 2017.

    Google Scholar 

  43. Brooks JC (2016) Microfluidic interfacing for primary endocrine tissue: developing bioanalytical methodologies and novel fabrication methods for cell culture and analysis. Dissertation, Auburn University

  44. Brooks JC, Ford KI, Holder DH, Holtan MD, Easley CJ. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue. Analyst. 2016;141(20):5714–21.

    Article  CAS  Google Scholar 

  45. Godwin LA, Brooks JC, Hoepfner LD, Wanders D, Judd RL, Easley CJ. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst. 2015;140(4):1019–25.

    Article  CAS  Google Scholar 

  46. Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT. Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem. 2009;81(6):2350–6.

    Article  CAS  Google Scholar 

  47. Clark AM, Sousa KM, Chisolm CN, MacDougald OA, Kennedy RT. Reversibly sealed multilayer microfluidic device for integrated cell perfusion and on-line chemical analysis of cultured adipocyte secretions. Anal Bioanal Chem. 2010;397(7):2939–47.

    Article  CAS  Google Scholar 

  48. Dugan CE, Cawthorn WP, MacDougald OA, Kennedy RT. Multiplexed microfluidic enzyme assays for simultaneous detection of lipolysis products from adipocytes. Anal Bioanal Chem. 2014;406(20):4851–9.

    Article  CAS  Google Scholar 

  49. Dugan CE, Grinias JP, Parlee SD, El-Azzouny M, Evans CR, Kennedy RT. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry. Anal Bioanal Chem. 2017;409(1):169–78.

    Article  CAS  Google Scholar 

  50. Dugan CE, Kennedy RT. Measurement of lipolysis products secreted by 3T3-L1 adipocytes using microfluidics. Methods Enzymol. 2014;538:195–209.

    Article  CAS  Google Scholar 

  51. Inomata N, Toda M, Ono T. Highly sensitive thermometer using a vacuum-packed Si resonator in a microfluidic chip for the thermal measurement of single cells. Lab Chip. 2016;16(18):3597–603.

    Article  CAS  Google Scholar 

  52. Zambon A, Zoso A, Gagliano O, Magrofuoco E, Fadini GP, Avogaro A, et al. High temporal resolution detection of patient-specific glucose uptake from human ex vivo adipose tissue on-chip. Anal Chem. 2015;87(13):6535–43.

    Article  CAS  Google Scholar 

  53. Roper MG. Cellular analysis using microfluidics. Anal Chem. 2016;88(1):381–94.

    Article  CAS  Google Scholar 

  54. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975;5(1):19–27.

    CAS  Google Scholar 

  55. Kuri-Harcuch W, Green H. Adipose conversion of 3T3 cells depends on a serum factor. Proc Natl Acad Sci USA. 1978;75(12):6107–9.

    Article  CAS  Google Scholar 

  56. Fischer-Posovszky P, Newell FS, Wabitsch M, Tornqvist HE. Human SGBS cells – a unique tool for studies of human fat cell biology. Obes Facts. 2008;1(4):184–9. https://doi.org/10.1159/000145784.

    Article  Google Scholar 

  57. Chang TH, Polakis SE. Differentiation of 3T3-L1 fibroblasts to adipocytes. Effect of insulin and indomethacin on the levels of insulin receptors. J Biol Chem. 1978;253(13):4693–6.

    CAS  Google Scholar 

  58. Mandrup S, Loftus TM, MacDougald OA, Kuhajda FP, Lane MD. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc Natl Acad Sci USA. 1997;94(9):4300–5.

    Article  CAS  Google Scholar 

  59. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.

    Article  CAS  Google Scholar 

  60. Yao R, Du Y, Zhang R, Lin F, Luan J. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution. Biomed Mater. 2013;8(4):045005.

    Article  Google Scholar 

  61. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007;28(35):5280–90.

    Article  CAS  Google Scholar 

  62. Wiggenhauser PS, Muller DF, Melchels FP, Egana JT, Storck K, Mayer H, et al. Engineering of vascularized adipose constructs. Cell Tissue Res. 2012;347(3):747–57.

    Article  CAS  Google Scholar 

  63. Wu X, Schneider N, Platen A, Mitra I, Blazek M, Zengerle R, et al. In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip. Proc Natl Acad Sci USA. 2016;113(29):E4143–50.

    Article  CAS  Google Scholar 

  64. Tanzi MC, Fare S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices. 2009;6(5):533–51.

    Article  Google Scholar 

  65. Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol. 1991;113(1):123–35.

    Article  CAS  Google Scholar 

  66. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol. 2012;13(6):383–96.

    Article  CAS  Google Scholar 

  67. Kraegen EW, James DE, Jenkins AB, Chisholm DJ. Dose–response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol. 1985;248(3 Pt 1):E353–62.

    CAS  Google Scholar 

  68. Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO. Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta. 1992;1126(2):135–42.

    Article  CAS  Google Scholar 

  69. Lafontan M. Advances in adipose tissue metabolism. Int J Obes (Lond). 2008;32(Suppl 7):S39–51.

    Article  CAS  Google Scholar 

  70. Kuda O, Pietka TA, Demianova Z, Kudova E, Cvacka J, Kopecky J, et al. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J Biol Chem. 2013;288(22):15547–55.

    Article  CAS  Google Scholar 

  71. Bolsoni-Lopes A, Alonso-Vale MI. Lipolysis and lipases in white adipose tissue – an update. Arch Endocrinol Metab. 2015;59(4):335–42.

    Article  Google Scholar 

  72. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.

    Article  CAS  Google Scholar 

  73. Eldor R, Raz I. Lipotoxicity versus adipotoxicity – the deleterious effects of adipose tissue on beta cells in the pathogenesis of Type 2 diabetes. Diabetes Res Clin Pract. 2006;74(2):S3–8.

    Article  CAS  Google Scholar 

  74. Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. Lab Chip. 2016;16(3):409–31.

    Article  CAS  Google Scholar 

  75. Wang Y, Lo JF, Mendoza-Elias JE, Adewola AF, Harvat TA, Kinzer KP, et al. Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis. 2010;2(10):1729–44.

    Article  CAS  Google Scholar 

  76. Kajimura S. Adipose tissue in 2016: Advances in the understanding of adipose tissue biology. Nat Rev Endocrinol. 2017;13(2):69–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the National Institutes of Health (R01 DK093810) and the Department of Chemistry and Biochemistry at Auburn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Easley.

Ethics declarations

The authors have no conflicts of interest to declare in relation to this work.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Easley, C.J. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal Bioanal Chem 410, 791–800 (2018). https://doi.org/10.1007/s00216-017-0741-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0741-8

Keywords

Navigation