Skip to main content
Log in

Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2018

This article has been updated

Abstract

Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an “official method” performed on a 100-m column.

Separation of fatty acid methyl esters on a 30-m 3m2C5(mpy)2. 2NTf2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 04 June 2018

    The authors would like to call the reader’s attention to the fact that the original publication included some corrections needed to be addressed.

References

  1. Wasserscheid P, Welton T. Ionic liquids in synthesis. 2nd ed. Weinheim: Wiley-VCH publishers; 2008.

    Google Scholar 

  2. Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem. 2013;86(1):262–85.

    Article  CAS  PubMed  Google Scholar 

  3. Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong DW, He L, Liu YS. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem. 1999;71:3873–6.

    Article  CAS  PubMed  Google Scholar 

  5. Patil RA, Talebi M, Sidisky LM, Armstrong DW. Examination of selectivities of thermally stable geminal dicationic ionic liquids by structural modification. Chromatographia. 2017; https://doi.org/10.1007/s10337-017-3372-5.

  6. Weber W, Andersson JT. Ionic liquids as stationary phases in gas chromatography—an LSER investigation of six commercial phases and some applications. Anal Bioanal Chem. 2014;406(22):5347–58.

    Article  CAS  PubMed  Google Scholar 

  7. Álvarez JG, Gomis DB, Abrodo PA, Llorente DD, Busto E, Lombardía NR, et al. Evaluation of new ionic liquids as high stability selective stationary phases in gas chromatography. Anal Bioanal Chem. 2011;400(5):1209–16.

    Article  CAS  Google Scholar 

  8. Anderson JL, Armstrong DW. Anderson JL, Armstrong DW. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem. 2003;75:4851–8.

    Article  CAS  PubMed  Google Scholar 

  9. Breitbach ZS, Armstrong DW. Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem. 2008;390:1605–17.

    Article  CAS  PubMed  Google Scholar 

  10. http://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html?TablePage=101691909 Accessed 10 Aug 2017.

  11. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem. 2011;83:7947–54.

    Article  CAS  PubMed  Google Scholar 

  12. Dettmer K. Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters. Anal Bioanal Chem. 2014;406:4931–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P. Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chrom A. 2012;1268:130–8.

    Article  CAS  Google Scholar 

  14. Cagliero C, Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. J Chrom A. 2017;1495:64–75.

    Article  CAS  Google Scholar 

  15. Talebi M, Frink LA, Patil RA, Armstrong DW. Examination of the varied and changing ethanol content of commercial Kombucha products. Food Anal Methods. 2017; https://doi.org/10.1007/s12161-017-0980-5.

  16. Weatherly CA, Woods RM, Armstrong DW. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. J Agric Food Chem. 2014;62(8):1832–8.

    Article  CAS  PubMed  Google Scholar 

  17. Frink LA, Armstrong DW. The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chem. 2016;205:23–7.

    Article  CAS  PubMed  Google Scholar 

  18. Frink LA, Weatherly CA, Armstrong DW. Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols. J Pharm Biomed Anal. 2014;94:111–7.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng AX, Chin ST, Nolvachai Y, Kulsing C, Sidisky LM, Marriott PJ. Characterisation of capillary ionic liquid columns for gas chromatography–mass spectrometry analysis of fatty acid methyl esters. Anal Chim Acta. 2013;803:166–73.

    Article  CAS  PubMed  Google Scholar 

  20. Lin CC, Wasta Z, Mjøs SA. Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters. J Chrom A. 2014;1350:83–91.

    Article  CAS  Google Scholar 

  21. Villegas C, Zhao Y, Curtis JM. Two methods for the separation of monounsaturated octadecenoic acid isomers. J Chrom A. 2010;1217(5):775–84.

    Article  CAS  Google Scholar 

  22. Ando Y, Sasaki T. GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase. J Am Oil Chem Soc. 2011;88(6):743–8.

    Article  CAS  Google Scholar 

  23. Delmonte P, Kia AR, Kramer JK, Mossoba MM, Sidisky L, Rader JI. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chrom A. 2011;1218(3):545–54.

    Article  CAS  Google Scholar 

  24. Ragonese C, Tranchida PQ, Dugo P, Dugo G, Sidisky LM, Robillard MV, et al. Evaluation of use of a dicationic liquid stationary phase in the fast and conventional gas chromatographic analysis of health-hazardous C18 cis/trans fatty acids. Anal Chem. 2009;81(13):5561–8.

    Article  CAS  PubMed  Google Scholar 

  25. Delmonte P, Fardin-Kia AR, Kramer JK, Mossoba MM, Sidisky L, Tyburczy C, et al. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chrom A. 2012;1233:137–46.

    Article  CAS  Google Scholar 

  26. Yoshinaga K, Asanuma M, Mizobe H, Kojima K, Nagai T, Beppu F, et al. Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography–flame ionisation detector equipped with highly polar ionic liquid capillary column. Food Chem. 2014;160:39–45.

    Article  CAS  PubMed  Google Scholar 

  27. Gómez-Cortés P, Rodríguez-Pino V, Juárez M, de la Fuente MA. Optimization of milk odd and branched-chain fatty acids analysis by gas chromatography using an extremely polar stationary phase. Food Chem. 2017;231:11–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fan H, Smuts J, Bai L, Walsh P, Armstrong DW, Schug KA. Gas chromatography–vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters. Food Chem. 2016;194:265–71.

    Article  CAS  PubMed  Google Scholar 

  29. Nosheen A, Mitrevski B, Bano A, Marriott PJ. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns. J Chrom A. 2013;1312:118–23.

    Article  CAS  Google Scholar 

  30. Hammann S, Vetter W. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column. J Chrom B. 2015;1007:67–71.

    Article  CAS  Google Scholar 

  31. Weatherly CA, Zhang Y, Smuts JP, Fan H, Xu C, Schug KA, et al. Analysis of long-chain unsaturated fatty acids by ionic liquid gas chromatography. J Agric Food Chem. 2016;64(6):1422–32.

    Article  CAS  PubMed  Google Scholar 

  32. Patil RA, Talebi M, Xu C, Bhawal SS, Armstrong DW. Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater. 2016;28(12):4315–23.

    Article  CAS  Google Scholar 

  33. Talebi M, Patil RA, Armstrong DW. Physicochemical properties of branched-chain dicationic ionic liquids. J Mol Liq. 2017, submitted (MOLLIQ_2017_4475).

  34. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111(5):3508–76.

    Article  CAS  PubMed  Google Scholar 

  35. Rodrigues AS, Lima CF, Coutinho JA, Santos LM. Nature of the C2-methylation effect on the properties of imidazolium ionic liquids. Phys Chem Chem Phys. 2017;19(7):5326–32.

    Article  CAS  PubMed  Google Scholar 

  36. Mjøs SA, Grahl-Nielsen O. Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters. J Chrom A. 2006;1110(1):171–80.

    Article  CAS  Google Scholar 

  37. http://www.sigmaaldrich.com/catalog/product/supelco/crm47885?lang=en&region=US Accessed 10 Aug 2017.

  38. Delmonte P, Kia AR, Hu Q, Rader JI. Review of methods for preparation and gas chromatographic separation of trans and cis reference fatty acids. J AOAC Int. 2009;92(5):1310–26.

    CAS  PubMed  Google Scholar 

  39. Firestone D. Official methods and recommended practices of the AOCS. 6th ed. Urbana: AOCS; 2009.

    Google Scholar 

  40. Precht D, Molkentin J. Rapid analysis of the isomers of trans-octadecenoic acid in milk fat. Int Dairy J. 1996;6(8–9):791–809.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge financial support from the Welch Foundation (Y0026). A. Berthod thanks the French Centre National de la Recherche Scientifique (CNRS ISA UMR5180) for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest. The commercial SLB-IL111 and SP-2560 columns were provided by MilliporeSigma and Leonard M. Sidisky is an employee of MilliporeSigma.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, M., Patil, R.A., Sidisky, L.M. et al. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography. Anal Bioanal Chem 410, 4633–4643 (2018). https://doi.org/10.1007/s00216-017-0722-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0722-y

Keywords

Navigation