Skip to main content
Log in

Ionic liquid capillary columns for analysis of multi-component volatiles by gas chromatography-mass spectrometry: performance, selectivity, activity and retention indices

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study investigates applications and performance evaluation of SLB-IL60, SLB-IL76 and SLB-IL111 columns, in relation to a DB-Wax column, for the analysis of coffee volatile compounds. Both standards and an authentic coffee sample were analysed, with solid-phase microextraction (SPME) sampling of the latter. A cryofocusing method was applied to improve resolution of the earliest eluting peaks using splitless injection SPME sample analysis. The Grob test was used to verify the inertness and efficiency of the columns, helping to understand the interactions between analytes and stationary phases, particularly toward more polar coffee analytes. A DB-5 column was used only in analysis of n-alkanes and Grob test mixtures as an apolar reference. The evaluated ionic liquid columns showed a moderate acid-base character and low inertness for compounds with hydrogen bond capabilities, especially for the hydroxylated analytes, 2,3-butanediol in the Grob test, and furanones and acids in the coffee standards. The columns exhibiting the best resolution and efficiency were DB-Wax and SLB-IL60, both for samples and standards. Although the DB-Wax column is preferred for analysis of coffee volatiles, due to better inertness, the evaluated ionic liquid columns allowed identification of compounds that were not observed in separations with the Wax-phase column in this work. Among these compounds is 3,4-dimethyl-2,5-furandione, seldom reported in the literature of coffee. Proposed improvement by the manufacturer in the inertness of the columns evaluated in this study may lead to better results; so future versions of IL phases may be better applied in the separation of target analytes, especially those with basic character.

Illustrative representation of the sample (coffee) and the chemical structures of the stationary phases of the ionic liquid capillary columns used as object of study in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poole CF, Lenca N. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J Chromatogr A. 2014;1357:87–109.

    Article  CAS  PubMed  Google Scholar 

  2. Hantao LW, Toledo BR, Augusto F. Fases estacionárias de líquidos iônicos em cromatografia gasosa: fundamentos, avanços recentes e perspectivas. Quim Nova. 2016;39:81–93.

    CAS  Google Scholar 

  3. Zeng AX, Chin ST, Nolvachai Y, Kulsing C, Sidisky LM, Marriott PJ. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters. Anal Chim Acta. 2013;803:166–73.

    Article  CAS  PubMed  Google Scholar 

  4. Kulsing C, Nolvachai Y, Zeng AX, Chin ST, Mitrevsky B, Marriott PJ. From molecular structures of ionic liquids to predicted retention of fatty acid methyl esters in comprehensive two-dimensional gas chromatography. ChemPlusChem. 2014;79:790–7.

    Article  CAS  Google Scholar 

  5. Nolvachai Y, Kulsing C, Marriott PJ. Thermally sensitive behavior explanation for unusual orthogonality observed in comprehensive two-dimensional gas chromatography comprising a single ionic liquid stationary phase. Anal Chem. 2015;87:538–44.

    Article  CAS  PubMed  Google Scholar 

  6. Nolvachai Y, Kulsing C, Marriott PJ. In silico modeling of hundred thousand experiments for effective selection of ionic liquid phase combinations in comprehensive two-dimensional gas chromatography. Anal Chem. 2016;88:2125–31.

    Article  CAS  PubMed  Google Scholar 

  7. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem. 2011;83:7947–54.

    Article  CAS  PubMed  Google Scholar 

  8. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Mondello L. Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques. J Chromatogr A. 2012;1255:130–44.

    Article  CAS  PubMed  Google Scholar 

  9. Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P. Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chromatogr A. 2012;1268:130–8.

    Article  CAS  PubMed  Google Scholar 

  10. Cagliero C, Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. J Chromatogr A. 2017;1495:64–75.

    Article  CAS  PubMed  Google Scholar 

  11. Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661:1–16.

    Article  CAS  PubMed  Google Scholar 

  12. Cordero C, Bicchi C, Rubiolo P. Group-type and fingerprint analysis of roasted food matrices (coffee and hazelnut samples) by comprehensive two-dimensional gas chromatography. J Agric Food Chem. 2008;56:7655–66.

    Article  CAS  PubMed  Google Scholar 

  13. Arruda NP, Hovell AMC, Rezende CM, Freitas SP, Couri S, Bizzo HR. Discriminação entre estádios de maturação e tipos de processamento de pós-colheita de cafés arábica por microextração em fase sólida e análise de componentes principais. Quim Nova. 2011;34:819–24.

    CAS  Google Scholar 

  14. Sunaharun WB, Williams DJ, Smyth HE. Complexity of coffee flavor: a compositional and sensory perspective. Food Res Int. 2014;62:315–25.

    Article  CAS  Google Scholar 

  15. Grob K Jr, Grob G, Grob K. Comprehensive, standardized quality test for glass capillary columns. J Chromatogr. 1978;156:1–20.

    Article  CAS  Google Scholar 

  16. Grob K, Grob G, Grob K Jr. Testing capillary gas chromatographic columns. J Chromatogr. 1981;219:13–20.

    Article  CAS  Google Scholar 

  17. van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr. 1963;11:463–71.

    Article  Google Scholar 

  18. Bieri S, Marriott PJ. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography. Anal Chem. 2008;80:760–8.

    Article  CAS  PubMed  Google Scholar 

  19. Perera RMM, Marriott PJ, Galbally IE. Headspace solid-phase microextraction—comprehensive two-dimensional gas chromatography of wound induced plant volatile organic compound emissions. Analyst. 2002;127:1601–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Sánchez S, Galindo-Iranzo P, Soria AC, Sanz ML, Quintanilla-López JE, Lebrón-Aguilar R. Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography. J Chromatogr A. 2014;1326:96–102.

    Article  CAS  PubMed  Google Scholar 

  21. Weber W, Andersson JT. Ionic liquids as stationary phases in gas chromatography-an LSER investigation of six commercial phases and some applications. Anal Bioanal Chem. 2014;406:5347–58.

    Article  CAS  PubMed  Google Scholar 

  22. Cardoso JN, Neto FRA. Testes de avaliação de colunas capilares para cromatografia com fase gasosa de alta resolução. Quim Nova. 1986;9:58–63.

    CAS  Google Scholar 

  23. Anderson JL, Armstrong DW. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem. 2003;75:4851–8.

    Article  CAS  PubMed  Google Scholar 

  24. Budryn G, Nebesny E, Kula J, Majda T, Krysiak W. HS-SPME/GC/MS profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews. Czech J Food Sci. 2011;29:151–60.

    Article  CAS  Google Scholar 

  25. Cheong MW, Tong KH, Ong JJM, Liu SQ, Curran P, Yu B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res Int. 2013;51:388–96.

    Article  CAS  Google Scholar 

  26. Lee LW, Cheong MW, Curran P, Yu B, Liu SQ. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: II. Effects of different roast levels. Food Chem. 2016;211:925–36.

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki Y, Shibamoto T, Wei CI, Fernando S. Biological and chemical studies on overheated brewed coffee. Food Chem Toxicol. 1987;25:225–8.

    Article  CAS  PubMed  Google Scholar 

  28. Toci AT, Farah A. Volatile compounds as potential defective coffee beans’ markers. Food Chem. 2008;108:1133–41.

    Article  CAS  PubMed  Google Scholar 

  29. Lee C, Lee Y, Lee JG, Buglass AJ. Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee. J Chromatogr A. 2013;1295:24–41.

    Article  CAS  PubMed  Google Scholar 

  30. Nagasawa A, Kamada Y, Kosaka Y, Arakida N, Hori M. Catechol—an oviposition stimulant for cigarette beetle in roasted coffee beans. J Chem Ecol. 2014;40:452–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lee C, Lee Y, Lee JG, Buglass AJ. Improving the extraction of headspace volatile compounds: development of a headspace multi-temperature solid-phase micro-extraction-single shot-gas chromatography/mass spectrometry (mT-HSSPME-ss-GC/MS) method and application to characterization of ground coffee aroma. Anal Methods. 2015;7:3521–36.

    Article  CAS  Google Scholar 

  32. Ryan D, Shellie R, Tranchida P, Casilli A, Mondello L, Marriott P. Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2004;1054:57–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank collaborating researchers from Universidade Federal do Rio de Janeiro (UFRJ) and Embrapa Agroindústria de Alimentos who assisted with this study. We also thank the financial support of Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip J. Marriott or Claudia M. Rezende.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, M.S.S., Marriott, P.J., Bizzo, H.R. et al. Ionic liquid capillary columns for analysis of multi-component volatiles by gas chromatography-mass spectrometry: performance, selectivity, activity and retention indices. Anal Bioanal Chem 410, 4615–4632 (2018). https://doi.org/10.1007/s00216-017-0718-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0718-7

Keywords

Navigation