Skip to main content
Log in

Glyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since its introduction in 1974, the herbicide glyphosate has experienced a tremendous increase in use, with about one million tons used annually today. This review focuses on sensors and electromigration separation techniques as alternatives to chromatographic methods for the analysis of glyphosate and its metabolite aminomethyl phosphonic acid. Even with the large number of studies published, glyphosate analysis remains challenging. With its polar and depending on pH even ionic functional groups lacking a chromophore, it is difficult to analyze with chromatographic techniques. Its analysis is mostly achieved after derivatization. Its purification from food and environmental samples inevitably results incoextraction of ionic matrix components, with a further impact on analysis derivatization. Its purification from food and environmental samples inevitably results in coextraction of ionic matrix components, with a further impact on analysis and also derivatization reactions. Its ability to form chelates with metal cations is another obstacle for precise quantification. Lastly, the low limits of detection required by legislation have to be met. These challenges preclude glyphosate from being analyzed together with many other pesticides in common multiresidue (chromatographic) methods. For better monitoring of glyphosate in environmental and food samples, further fast and robust methods are required. In this review, analytical methods are summarized and discussed from the perspective of biosensors and various formats of electromigration separation techniques, including modes such as capillary electrophoresis and micellar electrokinetic chromatography, combined with various detection techniques. These methods are critically discussed with regard to matrix tolerance, limits of detection reached, and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duke SO. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag Sci. 2015;71:652–7.

    Article  CAS  Google Scholar 

  2. McKnight US, Rasmussen JJ, Kronvang B, Binning PJ, Bjerg PL. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environ Pollut. 2015;200:64–76.

    Article  CAS  Google Scholar 

  3. Schmitz PM, Garvert H. Die ökonomische Bedeutung des Wirkstoffs Glyphosat für den Ackerbau in Deutschland. J Kult. 2012;64:150–62.

    Google Scholar 

  4. Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28:3–15.

    Article  CAS  Google Scholar 

  5. International Agency for Research on Cancer. Some organophosphate insecticides and herbicides, IARC monographs on the evaluation of carcinogenic risks to humans, vol. 112. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  6. Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Bengrahim-Tallaa L, Guha N, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015;16:490–1.

    Article  Google Scholar 

  7. European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13:4302.

    Google Scholar 

  8. Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, et al. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch Toxicol. 2017;91:2723–43.

    Article  CAS  Google Scholar 

  9. Portier CJ, Armstrong BK, Baguley BC, Baur X, Belyaev I, Bellé R, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). J Epidemiol Community Health. 2016;70:741–5.

    Article  Google Scholar 

  10. Williams GM, Aardema A, Acquavella J, Sir Berry C, Brusick D, Burns MM. Viana de Camargo JL, Garabrant D, Greim HA, Kier LD, Kirkland DJ, Marsh G, Solomon KR, Sorahan T, Roberts A, Weed DL. A review of the carcinogenic potential of glyphosate by four independent expert panels and comparison to the IARC assessment. Crit Rev Toxicol. 2016;46(Supp1):3–20.

    Article  CAS  Google Scholar 

  11. Committee for Risk Assessment, European Chemicals Agency. Opinion proposing harmonised classification and labelling at EU level of glyphosate, March 2017.

  12. European Parliament resolution of 13 April 2016 on the draft Commission implementing regulation renewing the approval of the active substance glyphosate in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the annex to implementing Regulation (EU) No 540/2011 (D044281/01 – 2016/2624(RSP)), P8_TA(2016)0119.

  13. European Food Safety Authority. The 2014 European Union report on pesticide residues in food. EFSA J. 2016;14:4611.

    Google Scholar 

  14. European Union EU pesticide database 1995–2017. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN. Accessed 07 Aug 08/2017.

  15. Final Addendum to the Renewal Assessment Report – public version. Risk assessment provided by the rapporteur member state Germany and co-rapporteur member state Slovakia for the active substance glyphosate, October 2015.

  16. Tomita M, Okuyama T, Nigo Y, Uno B, Kawai S. Determination of glyphosate and its metabolite (aminomethyl)phosphonic acid, in serum using capillary electrophoresis. J Chromatogr B. 1991;571:324–30.

    Article  CAS  Google Scholar 

  17. Niemann L, Sieke C, Pfeil R, Solecki R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm. 2015;10:3–12.

    Article  CAS  Google Scholar 

  18. Saunders LE, Pezeshki R. Glyphosate in runoff waters and in the root-zone: A review. Toxics. 2015;3:462–80.

    Article  Google Scholar 

  19. Office of Environmental Health. Hazard assessment of the California Environmental Protection Agency. 2016. https://oehha.ca.gov/proposition-65/crnr/glyphosate-be-listed-under-proposition-65-known-state-cause-cancer. Accessed 07 Aug 2017.

  20. Vereecken H. Mobility and leaching of glyphosate: a review. Pest Manag Sci. 2005;61:1139–51.

    Article  CAS  Google Scholar 

  21. Ding J, Guo H, Liu W-w, Zhang W-w, Wang J-w. Current progress on the detection of glyphosate in environmental samples. J Sci Appl BioMed. 2015;3:88–95.

    Google Scholar 

  22. Koskinen WC, Marek LJ, Hall KE. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest Manag Sci. 2016;72:423–32.

    Article  CAS  Google Scholar 

  23. González-Martínez MA, Puchados R, Maquieira A. On-line immunoanalysis for environmental pollutants: from batch assays to automated sensors. Trends Anal Chem. 1999;18:204–18.

    Article  Google Scholar 

  24. González-Martínez MA, Puchados R, Maquieira A. Optical immunosensors for environmental monitoring: how far have we come? Anal Bioanal Chem. 2007;387:205–18.

    Article  CAS  Google Scholar 

  25. González-Martínez MA, Brun EM, Puchades R, Maquieira A, Ramsey K, Rubio F. Glyphosate immunosensor. Application for water and soil analysis. Anal Chem. 2005;77:4219–27.

    Article  CAS  Google Scholar 

  26. Goodwin L, Startin JR, Keely BJ, Goodall DM. Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface. J Chromatogr A. 2003;1104:107–19.

    Article  CAS  Google Scholar 

  27. Safarpour H, Asiaie R. Determination of glyphosate as cross-contaminant in a commercial herbicide by capillary electrophoresis-electrospray ionization-mass spectrometry. Electrophoresis. 2005;26:1562–6.

    Article  CAS  Google Scholar 

  28. Iwamuro Y, Iio-Ishimaru R, Chinaka S, Takayama N, Kodama S, Hayakawa K. Analysis of phosphorus-containing amino acid-type herbicides by capillary electrophoresis/mass spectrometry using a chemically modified capillary having amino groups. J Health Sci. 2010;56:606–12.

    Article  CAS  Google Scholar 

  29. Kawai M, Iwamuro Y, Iio-Ishimaru R, Chinaka S, Takayama N, Hayakawa K. Analysis of phosphorus-containing amino acid-type herbicides by sheathless capillary electrophoresis/electrospray ionization-mass spectrometry using a high sensitivity porous sprayer. Anal Sci. 2011;27:857–60.

    Article  CAS  Google Scholar 

  30. Vidal DTR, do Lago CL, Daniel D. Development of an analytical method for the determination of glufosinate, glyphosate and AMPA in soybean milk by CE-MS/MS. Application note 5991-2888EN, Santa Clara: Agilent Technologies; 2013.

  31. Wuilloud RG, Shah M, Kannamkumaratz SS, Altamirano JC. The potential of inductively coupled plasma-mass spectrometric detection for capillary electrophoretic analysis of pesticides. Electrophoresis. 2005;26:1598–605.

    Article  CAS  Google Scholar 

  32. Yang G, Xu X, Shen M, Wang W, Xu L, Chen G, et al. Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. Electrophoresis. 2009;30:1718–23.

    Article  CAS  Google Scholar 

  33. You J, Kaljurand M, Koropchak JA. Direct determination of glyphosate in environmental waters using capillary electrophoresis with electrospray condensation nucleation light scattering detection. Int J Environ Anal Chem. 2003;83:797–806.

    Article  CAS  Google Scholar 

  34. See HH, Hauser PC, Ibrahim WAW, Sanagi MM. Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis. 2010;31:575–82.

    Article  CAS  Google Scholar 

  35. See HH, Hauser PC, Sanagi MM, Ibrahim WAW. Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2010;1217:5832–5.

    Article  CAS  Google Scholar 

  36. Goodwin L, Hanna M, Startin JR, Keely BJ, Goodall DM. Isotachophoretic separation of glyphosate, glufosinate, AMPA and MPP with contactless conductivity detection. Analyst. 2002;127:204–6.

    Article  CAS  Google Scholar 

  37. da Silva ER, Segato TP, Coltro WKT, Lima RS, Carrilho E, Mazo LH. Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection. Electrophoresis. 2013;34:2107–11.

    Article  CAS  Google Scholar 

  38. Horčičiak M, Masár M, Bodor R, Danč L, Bel P. Trace analysis of glyphosate in water by capillary electrophoresis on a chip with high sample volume loadability. J Sep Sci. 2012;35:674–780.

    Article  CAS  Google Scholar 

  39. Křivánková L, Boček P. Analytical control of the production of herbicides and growth regulators glyphosate and glyphosine by capillary isotachophoresis. Electrophoresis. 1986;7:100–3.

    Article  Google Scholar 

  40. Chiu H-Y, Lin Z-Y, Tu H-L, Whang C-W. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A. 2008;1177:195–8.

    Article  CAS  Google Scholar 

  41. Hooijschuur EWJ, Kientz CE, Dijksman J, Brinkman UAT. Potential of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for determination of polar phosphorus-containing pesticides. Chromatographia. 2001;54:295–301.

    Article  CAS  Google Scholar 

  42. Chang SY, Liao C-H. Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection. J Chromatogr A. 2002;959:309–15.

    Article  CAS  Google Scholar 

  43. Cikalo MG, Goodall DM, Matthews W. Analysis of glyphosate using capillary electrophoresis with indirect detection. J Chromatogr A. 1996;745:189–200.

    Article  CAS  Google Scholar 

  44. Rojano-Degado AM, Ruiz-Jiménez J, de Castro MDL, De Prado R. Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection. Electrophoresis. 2010;31:1423–30.

    Article  CAS  Google Scholar 

  45. Lanaro R, Costa JL, Cazenace SOS, Zanolli-Filho LA, Tavares MFM, Chasin AAM. Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis. J Forensic Sci. 2015;60:S241–7.

    Article  CAS  Google Scholar 

  46. Khrolenko M, Dżygiel P, Wieczorek P. Determination of glyphosate in water samples with the combination of cation-exchange chromatography and capillary electrophoresis. Ars Sep Acta. 2003;2:56–63.

    Google Scholar 

  47. Corbera M, Hildago M, Savadó V, Wieczorek PP. Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal Chim Acta. 2005;540:3–7.

    Article  CAS  Google Scholar 

  48. Kodama S, Ito Y, Taga A, Nomura Y, Yamamoto A, Chinaka S, et al. A fast and simple analysis of glyphosate in tea beverages by capillary electrophoresis with on-line copper(II)-glyphosate complex formation. J Health Sci. 2008;54:602–8.

    Article  CAS  Google Scholar 

  49. Wie X, Gao X, Zhao L, Peng L, Zhou L, Wang J, et al. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. J Chromatogr A. 2013;1271:148–54.

    Google Scholar 

  50. Navarrete-Casas M, Segura-Carretero A, Cruces-Blanco C, Fernández-Gutiérrez A. Potential determination of aminated pesticides and metabolites by cyclodextrin capillary electrophoresis-laser-induced fluorescence using FITC as labelling. Pest Manag Sci. 2005;61:197–203.

    Article  CAS  Google Scholar 

  51. Molina M, Silva M. Simultaneous determination of phosphorus-containing amino acid-herbicides by nonionic surfactant micellar electrokinetic chromatography with laser-induced fluorescence detection. Electrophoresis. 2001;22:1175–81.

    Article  CAS  Google Scholar 

  52. Molina M, Silva M. Analytical potential of fluorescein analogues for ultrasensitive determinations of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection. Electrophoresis. 2002;23:1096–103.

    Article  CAS  Google Scholar 

  53. Cao L, Deng T, Liang A, Tan X, Meng J. Determination of herbicides and its metabolite in soil and water samples by capillary electrophoresis-laser induced fluorescence detection using microwave-assisted derivatization. Anal Sci. 2014;30:759–66.

    Article  CAS  Google Scholar 

  54. Molina M, Silva M. In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2002;23:2333–40.

    Article  CAS  Google Scholar 

  55. Orejuela E, Silva M. Rapid and sensitive determination of phosphorus-containing amino acid herbicides in soil samples by capillary zone electrophoresis with diode laser-induced fluorescence detection. Electrophoresis. 2005;26:4478–85.

    Article  CAS  Google Scholar 

  56. Sung IH, Lee YW, Chung DS. Liquid extraction surface analysis in-line coupled with capillary electrophoresis for direct analysis of a solid surface sample. Anal Chim Acta. 2014;838:45–50.

    Article  CAS  Google Scholar 

  57. Zhou L, Luo Z, Wang S, Hui Y, Hu Z, Chen X. In-capillary derivatization and laser-induced fluorescence detection for the analysis of organophosphorus pesticides by micellar electrokinetic chromatography. J Chromatogr A. 2007;1149:377–84.

    Article  CAS  Google Scholar 

  58. Amelin VG, Bol’shakov DK, Tretiakov AV. Dispersive liquid-liquid microextraction and solid-phase extraction of polar pesticides from natural water and their determination by micellar electrokinetic chromatography. J Anal Chem. 2012;67:386–91.

    Article  CAS  Google Scholar 

  59. Chang SY, Wie M-Y. Simultaneous determination of glyphosate, glufosinate, and aminomethylphosphonic acid by capillary electrophoresis after 9-fluorenylmethyl chloroformate derivatization. J Chin Chem Soc. 2005;52:785–92.

    Article  CAS  Google Scholar 

  60. Dong Y, Guo D, Cui H, Lil X, He Y. Magnetic solid phase extraction of glyphosate and aminomethylphosphonic acid in river water using Ti4+-immobilized Fe3O4 nanoparticles by capillary electrophoresis. Anal Methods. 2015;7:5862–8.

    Article  CAS  Google Scholar 

  61. Wang M, Ye H, You L, Chen X. A supramolecular sensor array using lanthanide-doped nanoparticles for sensitive detection of glyphosate and proteins. ACS Appl Mater Interfaces. 2016;8:574–81.

    Article  CAS  Google Scholar 

  62. Lee HU, Jung DU, Lee JH, Song YS, Park C, Kim SW. Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core-shell nanoparticles. Sensors Actuators B Chem. 2013;177:879–86.

    Article  CAS  Google Scholar 

  63. Ding X, Yang K-L. Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Anal Chem. 2013;85:5727–33.

    Article  CAS  Google Scholar 

  64. Rawat KA, Majithiya RP, Rohit JV, Basu H, Singhalb KR, Kailasa SK. Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Adv. 2016;6:47741–52.

    Article  CAS  Google Scholar 

  65. Zhang Q, Xu G, Gong L, Dai H, Zhang S, Li Y, et al. An enzyme-assisted electrochemiluminescent biosensor developed on order mesoporous carbons substrate for ultrasensitive glyphosate sensing. Electrochim Acta. 2015;186:624–30.

    Article  CAS  Google Scholar 

  66. Do MH, Florea A, Farre C, Bonhomme A, Bessueille F, Vocanson F, et al. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem. 2015;95:1489–501.

    Article  CAS  Google Scholar 

  67. DeAlmeida LKS, Chigome S, Torto N, Frost CL, Pletschke BI. A novel colorimetric sensor strip for the detection of glyphosate in water. Sensors Actuators B Chem. 2015;206:357–63.

    Article  CAS  Google Scholar 

  68. Minami T, Liu Y, Akdeniz A, Koutnik P, Esipenko NA, Nishiyabu R, et al. Intramolecular indicator displacement assay for anions: Supramolecular sensor for glyphosate. J Am Chem Soc. 2014;136:11396–401.

    Article  CAS  Google Scholar 

  69. Lee UK, Shin HY, Lee JY, Song YS, Park CH, Kim SW. Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. J Agric Food Chem. 2010;58:12096–100.

    Article  CAS  Google Scholar 

  70. Chang Y-C, Lin Y-S, Xiao G-T, Chiu T-C, Hu C-C. A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta. 2016;161:94–8.

    Article  CAS  Google Scholar 

  71. Zhao P, Yan M, Zhang C, Peng R, Ma D, Yu J. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor. Spectrochim Acta A. 2011;78:1482–6.

    Article  CAS  Google Scholar 

  72. Songa EA, Somerset VS, Waryo T, Bakrter PGL, Iwuoha EI. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl Chem. 2009;81:123–39.

    Article  CAS  Google Scholar 

  73. Martin Boehme, personal communication, January 2017

  74. Hao N, Wang K. Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem. 2016;408:7035–48.

    Article  CAS  Google Scholar 

  75. Berho C, Claude B, Coisy E, Togola A, Bayoudh S, Morin P, et al. Laboratory calibration of a POCIS-like sampler based on molecularly imprinted polymers for glyphosate and AMPA sampling in water. Anal Bioanal Chem. 2017;409:2029–35.

    Article  CAS  Google Scholar 

  76. Rosini E, Piubelli L, Molla G, Frattini L, Valentino M, Varriale A, et al. Novel biosensors based on optimized glycine oxidase. FEBS J. 2014;281:3460–72.

    Article  CAS  Google Scholar 

  77. Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance – different approaches through protein engineering. FEBS J. 2011;278:2753–66.

    Article  CAS  Google Scholar 

  78. Zhang K, Guo Y, Yao P, Lin Y, Kumar A, Liu Z, et al. Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Enzym Microb Technol. 2016;85:12–8.

    Article  CAS  Google Scholar 

  79. Arkan T, Molnár-Perl I. The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography. Microchem J. 2015;121:99–106.

    Article  CAS  Google Scholar 

  80. Nagatomi Y, Yoshioka T, Yanagisawa M, Uyama A, Mochizuki N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci Biotechnol Biochem. 2013;77:2218–21.

    Article  CAS  Google Scholar 

  81. Hao C, Morse D, Morra F, Zhao X, Yang P, Nunn B. Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. J Chromatogr A. 2011;1218:5638–43.

    Article  CAS  Google Scholar 

  82. Freuze I, Jadas-Hecart A, Royer A, Communal PY. Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water. J Chromatogr A. 2007;1175:197–206.

    Article  CAS  Google Scholar 

  83. Skeff W, Recknagel C, Schulz-Bull DE. The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water. J Chromatogr A. 2016;1475:64–73.

    Article  CAS  Google Scholar 

  84. Steinborn A, Alder L, Michalski B, Zomer P, Bendig P, Martinez SA, et al. Determination of glyphosate levels in breast milk samples from Germany by LC-MS/MS and GC-MS/MS. J Agric Food Chem. 2016;64:1414–21.

    Article  CAS  Google Scholar 

  85. Hanke I, Singer H, Hollender J. Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem. 2008;391:2265–76.

    Article  CAS  Google Scholar 

  86. Borggaard OK, Gimsing AL. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci. 2008;64:441–56.

    Article  CAS  Google Scholar 

  87. Gimsing AL, Borggaard O. Effect of KCl and CaCl2 as background electrolytes on the competitive adsorption of glyphosate and phosphate on goethite. Clay Clay Miner. 2001;49:270–5.

    Article  CAS  Google Scholar 

  88. Pessagno RC, Torres Sánchez RM, dos Santos Afonso M. Glyphosate behavior at soil and mineral-water interfaces. Environ Pollut. 2008;153:53–9.

    Article  CAS  Google Scholar 

  89. Sheals J, Granström M, Sjöberg S, Persson P. Coadsorption of Cu(II) and glyphosate at the water-goethite (alpha-FeOOH) interface: molecular structures from FTIR and EXAFS measurements. J Colloid Interface Sci. 2003;262:38–47.

    Article  CAS  Google Scholar 

  90. Jonsson CM, Persson P, Sjöberg S, Loring JS. Adsorption of glyphosate on goethite (alpha-FeOOH): surface complexation modeling combining spectroscopic and adsorption data. Environ Sci Technol. 2008;42:2464–9.

    Article  CAS  Google Scholar 

  91. Shoval S, Yariv S. The interaction between Roundup (glyphosate) and montmorillonite. Part I. Infrared study of the sorption of glyphosate by montmorillonite. Clay Clay Miner. 1979;27:19–28.

    Article  CAS  Google Scholar 

  92. Pessagno RC, dos Santos AM, Torres Sanchez RM. N-(Phosphonomethyl)glycine interactions with soil. J Argent Chem Soc. 2005;4-6:97–106.

    Google Scholar 

  93. Ramstedt M, Norgren C, Sheals J, Shchukarev A, Sjöberg A. Chemical speciation of N-(phosphonomethyl)glycine in solution and at mineral interfaces. Surf Interface Anal. 2004;36:1074–7.

    Article  CAS  Google Scholar 

  94. Morillo E, Maqueda C, Bejarano M, Madrid L, Undabeytia T. Cu(II)-glyphosate system: a study by anodic stripping voltammetry and the influence on Cu adsorption by montmorillonite. Chemosphere. 1994;28:2185–96.

    Article  CAS  Google Scholar 

  95. Hiera da Cruz L, de Santana H, CTBV Z, DAM Z. Adsorption of glyphosate on clays and soils from Paraná State: Effect of pH and competitive adsorption of phosphate. Braz Arch Biol Technol. 2007;50:385–94.

    Article  CAS  Google Scholar 

  96. Miles CJ, Moye HA. Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils. J Agric Food Chem. 1988;36:486–91.

    Article  CAS  Google Scholar 

  97. Sheals J, Persson P, Hedman B. IR and EXAFS spectroscopic studies of glyphosate protonation and copper(II) complexes of glyphosate in aqueous solution. Inorg Chem. 2001;40:4302–9.

    Article  CAS  Google Scholar 

  98. Jonsson C. Adsorption of glyphosate on goethite (α-FeOOH): surface complexation modeling combining spectroscopic and adsorption data. Doctoral thesis 2007, Umeå Umeå University, Faculty of Science and Technology. Santa Clara: Agilent Tecchnologies.

  99. Gimsing AL, Borggaard OK, Bang M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci. 2004;5:183–91.

    Article  CAS  Google Scholar 

  100. Nowacj B, Stone AT. Adsorption of phosphonates onto the goethite–water Interface. J Colloid Interface Sci. 1999;214:20–30.

    Article  Google Scholar 

  101. Morillo E, Undabeytia T, Maqueda C, Ramos A. Glyphosate adsorption on soils of different characteristics. Influence of copper addition. Chemosphere. 2000;40:103–7.

    Article  CAS  Google Scholar 

  102. Gimsing AL, Borggaard OK, Jacobsen OS, Aamand J, Sørensen J. Chemical and microbiological soil characteristics controlling glyphosate mineralization in Danish surface soils. Appl Soil Ecol. 2004;27:233–42.

    Article  Google Scholar 

  103. Sasal MC, Demonte L, Cislaghi A, Gabioud EA, Oszust JD, Wilson MG, et al. Glyphosate loss by runoff and its relationship with phosphorus fertilization. J Agric Food Chem. 2015;63:4444–8.

    Article  CAS  Google Scholar 

  104. Kanisseri RG, Welsh A, Sims GK. Effect of soil aeration and phosphate addition on the microbial bioavailability of carbon-14-glyphosate. J Environ Qual. 2015;44:137–44.

    Article  CAS  Google Scholar 

  105. Laitinen P, Siimes K, Rämö S, Jauhiainen L, Eronen L, Oinonen S, et al. Soil phosphorus status in environmental risks assessment for glyphosate and glufosinate-ammonium. J Environ Qual. 2008;37:830–8.

    Article  CAS  Google Scholar 

  106. Murashov VV, Leszczynski J. Adsorption of the phosphate groups on silica hydroxyls: An ab initio study. J Phys Chem A. 1999;103:1228–38.

    Article  CAS  Google Scholar 

  107. Surowiec K, Buszewski B, Suprynowicz Z. The Influence of chemical modification of fused silica capillary tubes on the electroosmotic flow in capillary zone electrophoresis. Chem Anal. 1996;41:201–7.

    CAS  Google Scholar 

  108. Coupe RH, Kalkhoff SK, Capel PD, Gregoire C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci. 2012;68:16–30.

    Article  CAS  Google Scholar 

  109. Kortum G, Vogel W, Andrussow K. IUPAC Dissociation constants of organic acids in aqueous solution. London: Butterworths; 1961. p. 478.

    Google Scholar 

  110. Rojano-Delgado AM, de Castro MDL. Capillary electrophoresis and herbicide analysis: present and future perspectives. Electrophoresis. 2014;35:2509–19.

    Article  CAS  Google Scholar 

  111. Kumar A, Malik AK, Picó Y. Sample preparation methods for the determination of pesticides in foods using CE-UV/MS. Electrophoresis. 2010;31:2115–25.

    Article  CAS  Google Scholar 

  112. Chang P-L, Hsieh M-M, Chiu T-C. Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. Int J Environ Res Public Health. 2016;13:409–29.

    Article  CAS  Google Scholar 

  113. Wuethrich A, Haddad PA, Quirino JP. Simultaneous electrophoretic concentration and separation of herbicides in beer prior to stacking capillary electrophoresis UV and liquid chromatography-mass spectrometry. Electrophoresis. 2016;37:1122–8.

    Article  CAS  Google Scholar 

  114. Kleter GA, Unsworth JB, Harris CA. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues. Pest Manag Sci. 2011;67:1193–210.

    Article  CAS  Google Scholar 

  115. Stephenson CL, Harris CA. An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods. Food Chem Toxicol. 2016;95:28–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Collaborative Research Center 1253 CAMPOS (Project 4 - Floodplain Biogeochemistry), funded by the German Research Foundation (DFG grant agreement SFB 1253/1 2017) and by the German Excellence Initiative commissioned by the German Research Foundation. We thank Martin Boehme for his work leading to Fig. 1. CH thanks U. and M. Moosburger for their support in finalizing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Huhn.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauglitz, G., Wimmer, B., Melzer, T. et al. Glyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography. Anal Bioanal Chem 410, 725–746 (2018). https://doi.org/10.1007/s00216-017-0679-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0679-x

Keywords

Navigation