Skip to main content

Advertisement

Log in

Advanced bioanalytics for precision medicine

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional “one size fits all” concept, according to which researchers develop disease treatments and preventions for an “average” patient without considering individual differences. The “one size fits all” concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer’s disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient’s specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine.

Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. https://www.fda.gov/scienceresearch/specialtopics/precisionmedicine/default.htm. Last accessed 12 July 2017.

  2. Spear BB. Clinical application of pharmacogenetics. Trends Mol Med. 2001;7(5):201–4.

    Article  CAS  Google Scholar 

  3. Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F. Precision medicine in breast cancer: reality or utopia? J Transl Med. 2017;15(1):139.

    Article  Google Scholar 

  4. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473–84.

    Article  CAS  Google Scholar 

  5. Williams RJ. Biochemical individuality: the basis for the genetotrophic concept. New York: Wiley; 1956. p. 214.

    Google Scholar 

  6. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184–7.

    Article  Google Scholar 

  7. He KY, Ge D, He MM. Big data analytics for genomic medicine. Int J Mol Sci. 2017;18(2):E412.

    Article  Google Scholar 

  8. Guo W, Feng X. OM-FBA: Integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PLoS One. 2016;11(4):e0154188.

    Article  Google Scholar 

  9. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Dávila-Fajardo CL, Deneer VH, et al. Implementing pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clin Pharmacol Ther. 2017;101(3):341–58.

    Article  Google Scholar 

  10. Berry AB. Analytic inquiry: validation and practical considerations. Cancer. 2017;125(S6):465–9.

    Google Scholar 

  11. Liu X, Wang P, Zhang C, Ma Z. Epidermal growth factor receptor (EGFR): a rising star in the era of precision medicine of lung cancer. Oncotarget. 2017; 10.18632/oncotarget.16854. in press

  12. Zhao J, Guerrero A, Kelnar K, Peltier HJ, Bader AG. Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer. Lung Cancer. 2017;108:96–102.

    Article  Google Scholar 

  13. Kaye JB, Schultz LE, Steiner HE, Kittles RA, Cavallari LH, Karnes JH (2017) Pharmacotherapy Jul 3. doi: https://doi.org/10.1002/phar.1982. in press

  14. Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CR, Hutz MH. Influence of genetic, biological, and pharmacological factors on levodopa dose in Parkinson's disease. Pharmacogenomics. 2016;17(5):481–8.

    Article  CAS  Google Scholar 

  15. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: Are we there yet? Pharmacogenomics J. 2017; https://doi.org/10.1038/tpj.2017.21. in press

  16. Leppert J, Patel C. Perspective: Beyond the genome. Nature. 2016;537(7620):S105.

    Article  CAS  Google Scholar 

  17. Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab. 2016;4:4.

    Article  Google Scholar 

  18. Li S, Todor A, Luo R. Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J. 2016;14:1–7.

    Article  Google Scholar 

  19. Kim JY, Lee H, Woo J, Yue W, Kim K, Choi S, et al. Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer. Sci Rep. 2017;7(1):3466.

    Article  Google Scholar 

  20. Basu B, Basu S. Correlating and combining genomic and proteomic assessment with in vivo molecular functional imaging: Will this be the future roadmap for personalized cancer management? Cancer Biother Radiopharm. 2016;31(3):75–84.

    Article  Google Scholar 

  21. Majumdar D, Peng XH, Shin DM. The medicinal chemistry of theragnostics, multimodality imaging, and applications of nanotechnology in cancer. Curr Top Med Chem. 2010;10(12):1211–26.

    Article  CAS  Google Scholar 

  22. Hanna MG, Pantanowitz L. The role of informatics in patient-centered care and personalized medicine. Cancer. 2017;125(S6):494–501.

    Google Scholar 

  23. Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15(12):747–56.

    Article  CAS  Google Scholar 

  24. Chen IY, Matsa E, JC W. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13(6):333–49.

    Article  CAS  Google Scholar 

  25. Garralda E, Paz K, López-Casas PP, Jones S, Katz A, Kann LM, et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res. 2014;20(9):2476–84.

    Article  CAS  Google Scholar 

  26. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71.

    Article  CAS  Google Scholar 

  27. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem. 1988;60:2299–301.

    Article  CAS  Google Scholar 

  28. Lesur A, Domon B. Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics. 2015;15(5/6):880–90.

    Article  CAS  Google Scholar 

  29. Ruhaak LR, van der Burgt YEM, Cobbaert CM. Prospective applications of ultrahigh resolution proteomics in clinical mass spectrometry. Exp Rev Proteom. 2016;13(12):1063–71.

    Article  CAS  Google Scholar 

  30. Duarte TT, Spencer CT. Personalized proteomics: the future of precision medicine. Proteomes. 2016;4(4):29.

    Article  Google Scholar 

  31. Marshall DD, Powers R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017;100:1–16.

    Article  CAS  Google Scholar 

  32. Cheng K, Chui H, Domish L, Hernandez D, Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl. 2016;10(4):346–57.

    Article  CAS  Google Scholar 

  33. van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:161–79.

    Article  Google Scholar 

  34. Weissinger EM, Metzger J, Dobbelstein C, Wolff D, Schleuning M, Kuzmina Z, et al. Proteomic peptide profiling for preemptive diagnosis of acute graft-versus-host disease after allogeneic stem cell transplantation. Leukemia. 2014;28(4):842–52.

    Article  CAS  Google Scholar 

  35. Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: recent developments in a connected age. Anal Chem. 2017;89:102–23.

    Article  CAS  Google Scholar 

  36. Roda A, Michelini E, Zangheri M, Di Fusco M, Calabria D, Simoni P. Smartphone-based biosensors: a critical review and perspectives. TrAC Trends Anal Chem. 2016;79:317–25.

    Article  CAS  Google Scholar 

  37. Quesada-Gonzalez D, Merkoci A. Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens Bioelectron. 2017;92:549–62.

    Article  CAS  Google Scholar 

  38. Comina G, Suska A, Filippini D. Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosens Bioelectron. 2016;77:1153–67.

    Article  CAS  Google Scholar 

  39. Contreras-Naranjo JC, Wei Q, Ozcan A. Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Select Topics. Quantum Electron. 2016;22(3):7100414.

    Google Scholar 

  40. Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, et al. Role of imaging in the era of precision medicine. Acad Radiol. 2017;24(5):639–49.

    Article  Google Scholar 

  41. Yankeelov TE, Abramson RG, Quarles CC. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol. 2014;11(11):670–80.

    Article  Google Scholar 

  42. Ulrich M, von Braunmuehl T, Kurzen H, Dirschka T, Kellner C, Sattler E, et al. The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study. Br J Dermatol. 2015;173(2):428–35.

    Article  CAS  Google Scholar 

  43. Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging, and multiplex analysis. Methods. 2014;70(1):46–58.

    Article  CAS  Google Scholar 

  44. Vaysse P-M, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research – latest developments, applications, and current limitations. Analyst. 2017; https://doi.org/10.1039/C7AN00565B. in press

  45. Mankoff DA, Farwell MD, Clark AS, Pryma DA. Making molecular imaging a clinical tool for precision oncology: a review. JAMA Oncol. 2017;3(5):695–701.

    Article  Google Scholar 

  46. Zhao Q, Chen X, Zhou Y. Quantitative multimodal multiparametric imaging in Alzheimer’s disease. Brain Inform. 2016;3(1):29–37.

    Article  Google Scholar 

  47. Mao X, Xu J, Cui H. Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):814–41.

    Article  CAS  Google Scholar 

  48. Garcia J, Tang T, Louie AY. Nanoparticle-based multimodal PET/MRI probes. Nanomedicine (Lond). 2015;10(8):1343–59.

    Article  CAS  Google Scholar 

  49. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115(19):10907–37.

    Article  CAS  Google Scholar 

  50. Grosenick D, Rinneberg H, Cubeddu R, Taroni P. Review of optical breast imaging and spectroscopy. J Biomed Opt. 2016;21(9):091311.

    Article  Google Scholar 

  51. Arranz A, Ripoll J. Advances in optical imaging for pharmacological studies. Front Pharmacol. 2015;6:189.

    Article  Google Scholar 

  52. Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014;82(1/2):175–85.

    Article  Google Scholar 

  53. Hicks DG, Turner B. Pathologic diagnosis, immunohistochemistry, multigene assays, and breast cancer treatment: progress toward “precision” cancer therapy. Biotech Histochem. 2015;90(2):81–92.

    Article  CAS  Google Scholar 

  54. Torlakovic EE, Cheung CC, D'Arrigo C, Dietel M, Francis GD, Gilks CB, et al. Evolution of quality assurance for clinical immunohistochemistry in the era of precision medicine. Part 3: Technical validation of immunohistochemistry (IHC) assays in clinical IHC laboratories. Appl Immunohistochem Mol Morphol. 2017;25(3):151–9.

    Article  Google Scholar 

  55. Zhang W, Hubbard A, Jones T, Racolta A, Bhaumik S, Cummins N, et al. Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. Lab Invest. 2017;97(7):873–85.

    Article  CAS  Google Scholar 

  56. Nakamura M, Hayashi K, Kubo H, Kanadani T, Harada M, Yogo T. Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging. J Colloid Interface Sci. 2017;492:127–35.

    Article  CAS  Google Scholar 

  57. de Macedo CS, Anderson DM, Schey KL. MALDI (matrix assisted laser desorption ionization) IMS (imaging mass spectrometry) of skin: aspects of sample preparation. Talanta. 2017;174:325–35.

    Article  Google Scholar 

  58. Arentz G, Mittal P, Zhang C, Ho YY, Briggs M, Winderbaum L, et al. Applications of mass spectrometry imaging to cancer. Adv Cancer Res. 2017;134:27–66.

    Article  CAS  Google Scholar 

  59. Harris K, Rohrbach DJ, Attwood K, Qiu J, Sunar U. Optical imaging of tissue obtained by transbronchial biopsies of peripheral lung lesions. J Thorac Dis. 2017;9(5):1386–92.

    Article  Google Scholar 

  60. Grieve K, Mouslim K, Assayag O, Dalimier E, Harms F, Bruhat A, et al. Assessment of sentinel node biopsies with full-field optical coherence tomography. Technol Cancer Res Treat. 2016;15(2):266–74.

    Article  Google Scholar 

  61. Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ. Big data for health. IEEE J Biomed Health Inform. 2015;19:1193–208.

    Article  Google Scholar 

  62. Patterson ME, Miranda D, Schuman G, Eaton C, Smith A, Silver B. A focus group exploration of automated case-finders to identify high-risk heart failure patients within an urban safety net hospital. EGEMS (Washington DC). 2016;4(3):1225.

    Google Scholar 

  63. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7(5):462–77.

    Article  Google Scholar 

  64. Kovac J, den Bakker H, Carroll LM, Wiedmann M. Precision food safety: a systems approach to food safety facilitated by genomics tools. TrAC. 2017; https://doi.org/10.1016/j.trac.2017.06.001. in press

Download references

Acknowledgments

The authors thank Miss Grace Fox who proofread and copyedited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Roda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roda, A., Michelini, E., Caliceti, C. et al. Advanced bioanalytics for precision medicine. Anal Bioanal Chem 410, 669–677 (2018). https://doi.org/10.1007/s00216-017-0660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0660-8

Keywords

Navigation