Uncertainty evaluation in normalization of isotope delta measurement results against international reference materials

Research Paper
  • 70 Downloads
Part of the following topical collections:
  1. ABCs 16th Anniversary.

Abstract

Isotope delta measurements are normalized against international reference standards. Although multi-point normalization is becoming a standard practice, the existing uncertainty evaluation practices are either undocumented or are incomplete. For multi-point normalization, we present errors-in-variables regression models for explicit accounting of the measurement uncertainty of the international standards along with the uncertainty that is attributed to their assigned values. This manuscript presents framework to account for the uncertainty that arises due to a small number of replicate measurements and discusses multi-laboratory data reduction while accounting for inevitable correlations between the laboratories due to the use of identical reference materials for calibration. Both frequentist and Bayesian methods of uncertainty analysis are discussed.

Keywords

Isotope delta Normalization Uncertainty evaluation Random effects model 

Notes

Acknowledgments

The authors have benefited from discussions with Blaza Toman, National Institute of Standards and Technology, USA.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_659_MOESM1_ESM.pdf (494 kb)
(PDF 59.8 KB)
216_2017_659_MOESM2_ESM.xlsm (63 kb)
(XLSM 63.0 KB)

References

  1. 1.
    Schimmelmann A, Qi H, Coplen TB, Brand WA, Fong J, Meier-Augenstein W, Kemp HF, Toman B, Ackermann A, Assonov S, Aerts-Bijma AT, Brejcha R, Chikaraishi Y, Darwish T, Elsner M, Gehre M, Geilmann H, Gröning M, Hélie JF, Herrero-Martín S, Meijer HAJ, Sauer PE, Sessions AL, Werner RA. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Anal Chem 2016;88:4294–4302. https://doi.org/10.1021/acs.analchem.5b04392.CrossRefGoogle Scholar
  2. 2.
    Skrzypek G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 2012;405:2815–2823. https://doi.org/10.1007/s00216-012-6517-2.CrossRefGoogle Scholar
  3. 3.
    Szpak P, Metcalfe JZ, Macdonald RA. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Arch. Sci.: Reports 2017;13:609–616. https://doi.org/10.1016/j.jasrep.2017.05.007.Google Scholar
  4. 4.
    Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 2001;15:501–519. https://doi.org/10.1002/rcm.258.CrossRefGoogle Scholar
  5. 5.
    Dunn PJH, Hai L, Malinovsky D, Goenaga-Infante H. Simple spreadsheet templates for the determination of the measurement uncertainty of stable isotope ratio delta values. Rapid Commun Mass Spectrom 2015;29:2184–2186. https://doi.org/10.1002/rcm.7376.CrossRefGoogle Scholar
  6. 6.
    Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 2011; 25: 2538–2560. https://doi.org/10.1002/rcm.5129.CrossRefGoogle Scholar
  7. 7.
    Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem 2006;78: 2051–2066. https://doi.org/10.1351/pac200678112051.CrossRefGoogle Scholar
  8. 8.
    Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 2014;86 :425–467. https://doi.org/10.1515/pac-2013-1023.CrossRefGoogle Scholar
  9. 9.
    Paul D, Skrzypek G, Fórizs I. Normalization of measured stable isotopic compositions to isotope reference scales - a review. Rapid Commun Mass Spectrom 2007;21:3006–3014. https://doi.org/10.1002/rcm.3185.CrossRefGoogle Scholar
  10. 10.
    Carter JF, Barwick VJ. 2011. Good Practice Guide for Isotope Ratio Mass Spectrometry (FIRMS) ISBN 978-0-948926-31-0.Google Scholar
  11. 11.
    ISO 6143:2001. 2001. Gas analysis – comparison methods for determining and checking the composition of calibration gas mixtures International Organization for Standardization Geneva, Switzerland.Google Scholar
  12. 12.
    Guenther FR, Possolo A. Calibration and uncertainty assessment for certified reference gas mixtures. Anal Bioanal Chem 2011;399:489–500. https://doi.org/10.1007/s00216-010-4379-z.CrossRefGoogle Scholar
  13. 13.
    Possolo AM. 2015. Simple guide for evaluating and expressing the uncertainty of NIST Measurement Results, Technical Note 1900 (NIST).Google Scholar
  14. 14.
    Kacker RN. Combining information from interlaboratory evaluations using a random effects model. Metrologia 2004;41:132–136. https://doi.org/10.1088/0026-1394/41/3/004.CrossRefGoogle Scholar
  15. 15.
    Toman B, Possolo A. Laboratory effects models for interlaboratory comparisons. Accred Qual Assur 2009; 14:553–563. https://doi.org/10.1007/s00769-009-0547-2.CrossRefGoogle Scholar
  16. 16.
    Koepke A, Lafarge T, Possolo A, Toman B. Consensus building for interlaboratory studies, key comparisons, and metaanalysis. Metrologia 2017;54:S34–S62. https://doi.org/10.1088/1681-7575/aa6c0e.CrossRefGoogle Scholar
  17. 17.
    Bodnar O, Elster C, Fischer J, Possolo A, Toman B. Evaluation of uncertainty in the adjustment of fundamental constants. Metrologia 2016;53:S46–S54. https://doi.org/10.1088/0026-1394/53/1/s46.CrossRefGoogle Scholar
  18. 18.
    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. 2011. Supplement 2 to the ‘Guide to the Expression of Uncertainty in Measurement’ – Extension to any number of output quantities, JCGM 102:2011 (BIPM).Google Scholar
  19. 19.
    Lafarge T, Possolo A. The NIST Uncertainty Machine. NCSLI Measure 2015;10:20–27.CrossRefGoogle Scholar
  20. 20.
    Danzer K, Currie LA. Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure Appl Chem 1998;70:993–1014. https://doi.org/10.1351/pac199870040993.CrossRefGoogle Scholar
  21. 21.
    Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. 2006. Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition (Chapman and Hall/CRC) ISBN 1584886331 .Google Scholar
  22. 22.
    Coplen TB, Shrestha Y. 2016. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report). Pure and Applied Chemistry 88.Google Scholar
  23. 23.
    Callier V. Have a sweet tooth? New blood test could tell. Science 2015;348:488–488. https://doi.org/10.1126/science.348.6234.488.CrossRefGoogle Scholar
  24. 24.
    Possolo A, Toman B. Assessment of measurement uncertainty via observation equations. Metrologia 2007; 44:464–475. https://doi.org/10.1088/0026-1394/44/6/005.CrossRefGoogle Scholar

Copyright information

© Crown 2017

Authors and Affiliations

  1. 1.Measurement Science and StandardsNational Research Council CanadaOttawaCanada

Personalised recommendations