Skip to main content
Log in

“Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional branched copolymer, with N,N′-methylene bisacrylamide as the crosslinker and 3-allyloxy-2-hydroxy-1-propane sulfonic acid sodium salt as the monomer, was grafted from silica particles by thiol-ene click reaction. The obtained hydrophilic material with sulfonic acid groups was successfully applied for chromatography separation and glycopeptide enrichment. The separation mechanism was proven as the mixed mode of hydrophilic interaction and cation-exchange by investigating the effect of various chromatographic factors on the retention of polar analytes. By such mixed-mode chromatography, nucleosides, nucleobases, and acidic compounds were successfully separated. The column efficiency was up to 136,000 theoretical plates m−1 for cytidine, which was much higher than those of previous reports. Furthermore, benefitting from the large amount of hydrophilic groups provided by the branched copolymer, the material was used for the selective enrichment of glycopeptides. Results demonstrated the great potential of such material for chromatography separation and glycoproteome analysis.

The branched copolymer modified HILIC/cation-exchange particles Sil@Poly(AHPS-co-MBAAm) were prepared via thiol-ene click copolymerization reaction. Such Sil@Poly(AHPS-co-MBAAm) particles showed great performance in the separation of polar compounds and the enrichment of glycopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J Chromatogr. 1990;499:177–96.

    Article  CAS  Google Scholar 

  2. Guo Y. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst. 2015;140(19):6452–66.

    Article  CAS  Google Scholar 

  3. Kivilompolo M, Ohrnberg L, Oresic M, Hyotylainen T. Rapid quantitative analysis of carnitine and acylcarnitines by ultra-high performance-hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2013;1292:189–94.

    Article  CAS  Google Scholar 

  4. Gama MR, da Costa Silva RG, Collins CH, Bottoli CBG. Hydrophilic interaction chromatography. TrAC Trends Anal Chem. 2012;37:48–60.

    Article  CAS  Google Scholar 

  5. Long Z, Guo Z, Liu X, Zhang Q, Liu X, Jin Y, et al. A sensitive non-derivatization method for apramycin and impurities analysis using hydrophilic interaction liquid chromatography and charged aerosol detection. Talanta. 2016;146:423–9.

    Article  CAS  Google Scholar 

  6. Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KE. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem. 2011;83(22):8703–10.

    Article  CAS  Google Scholar 

  7. Scott NE, Marzook NB, Cain JA, Solis N, Thaysen-Andersen M, Djordjevic SP, et al. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O. J Proteome Res. 2014;13(11):5136–50.

    Article  CAS  Google Scholar 

  8. Tetaz T, Detzner S, Friedlein A, Molitor B, Mary JL. Hydrophilic interaction chromatography of intact, soluble proteins. J Chromatogr A. 2011;1218(35):5892–6.

    Article  CAS  Google Scholar 

  9. Alagesan K, Khilji SK, Kolarich D. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem. 2017;409(2):529–38.

    Article  CAS  Google Scholar 

  10. Planinc A, Dejaegher B, Vander Heyden Y, Viaene J, Van Praet S, Rappez F, et al. LC-MS analysis combined with principal component analysis and soft independent modelling by class analogy for a better detection of changes in N-glycosylation profiles of therapeutic glycoproteins. Anal Bioanal Chem. 2017;409(2):477–85.

    Article  CAS  Google Scholar 

  11. Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem. 2012;402(1):231–47.

    Article  CAS  Google Scholar 

  12. Chester TL. Recent developments in high-performance liquid chromatography stationary phases. Anal Chem. 2013;85(2):579–89.

    Article  CAS  Google Scholar 

  13. Qiu H, Takafuji M, Sawada T, Liu X, Jiang S, Ihara H. New strategy for drastic enhancement of selectivity via chemical modification of counter anions in ionic liquid polymer phase. Chem Commun (Camb). 2010;46(46):8740–2.

    Article  CAS  Google Scholar 

  14. Qiu H, Zhang M, Gu T, Takafuji M, Ihara H. A sulfonic-azobenzene-grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography. Chem Eur J. 2013;19(52):18004–10.

    Article  CAS  Google Scholar 

  15. Shi X, Qiao L, Xu G. Recent development of ionic liquid stationary phases for liquid chromatography. J Chromatogr A. 2015;1420:1–15.

    Article  CAS  Google Scholar 

  16. Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, et al. Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem. 2013;85(17):8232–9.

    Article  CAS  Google Scholar 

  17. Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem. 2008;80(1):62–76.

    Article  CAS  Google Scholar 

  18. Qiao L, Wang S, Li H, Shan Y, Dou A, Shi X, et al. A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. J Chromatogr A. 2014;1360:240–7.

    Article  CAS  Google Scholar 

  19. Vass A, Robles-Molina J, Perez-Ortega P, Gilbert-Lopez B, Dernovics M, Molina-Diaz A, et al. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Anal Bioanal Chem. 2016;408(18):4857–69.

    Article  CAS  Google Scholar 

  20. Barsbay M, Guven O, Davis TP, Barner-Kowollik C, Barner L. RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via gamma-radiation. Polymer. 2009;50(4):973–82.

    Article  CAS  Google Scholar 

  21. Liu JX, Yang KG, Shao WY, Qu YY, Li SW, Wu Q, et al. Boronic acid-functionalized particles with flexible three-dimensional polymer branch for highly specific recognition of glycoproteins. ACS Appl Mater Interfaces. 2016;8(15):9552–6.

    Article  CAS  Google Scholar 

  22. Tucker-Schwartz AK, Farrell RA, Garrell RL. Thiol-ene click reaction as a general route to functional trialkoxysilanes for surface coating applications. J Am Chem Soc. 2011;133(29):11026–9.

    Article  CAS  Google Scholar 

  23. Weng Y, Qu Y, Jiang H, Wu Q, Zhang L, Yuan H, et al. An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. Anal Chim Acta. 2014;833:1–8.

    Article  CAS  Google Scholar 

  24. Qu Y, Xia S, Yuan H, Wu Q, Li M, Zou L, et al. Integrated sample pretreatment system for N-linked glycosylation site profiling with combination of hydrophilic interaction chromatography and PNGase F immobilized enzymatic reactor via a strong cation exchange precolumn. Anal Chem. 2011;83(19):7457–63.

    Article  CAS  Google Scholar 

  25. Povie G, Tran AT, Bonnaffe D, Habegger J, Hu Z, Le Narvor C, et al. Repairing the thiol-ene coupling reaction. Angew Chem. 2014;53(15):3894–8.

    Article  CAS  Google Scholar 

  26. Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H. A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal Chim Acta. 2012;738:95–101.

    Article  CAS  Google Scholar 

  27. Hemström P, Irgum K. Hydrophilic interaction chromatography. J Sep Sci. 2006;29(12):1784–821.

    Article  Google Scholar 

  28. Guo Y, Gaiki S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A. 2011;1218(35):5920–38.

    Article  CAS  Google Scholar 

  29. Shen A, Guo Z, Yu L, Cao L, Liang X. A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica. Chem Commun (Camb). 2011;47(15):4550–2.

    Article  CAS  Google Scholar 

  30. Qiao X, Zhang L, Zhang N, Wang X, Qin X, Yan H, et al. Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography. J Chromatogr A. 2015;1400:107–16.

    Article  CAS  Google Scholar 

  31. Padivitage NLT, Armstrong DW. Sulfonated cyclofructan 6 based stationary phase for hydrophilic interaction chromatography. J Sep Sci. 2011;34(14):1636–47.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21235005, 91543201, 21575139), the National Basic Research Program of China (2012CB910601), and the Creative Research Group Project by NSFC (21321064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Liu, J., Liang, Y. et al. “Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment. Anal Bioanal Chem 410, 1019–1027 (2018). https://doi.org/10.1007/s00216-017-0626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0626-x

Keywords

Navigation