Skip to main content
Log in

Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) – six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wise SA, Bonnett WJ, Guenther FR, May WE. A relationship between reversed-phase C18 liquid chromatographic retention and the shape of polycyclic aromatic hydrocarbons. J Chromatogr Sci. 1981;19:457–65.

    Article  CAS  Google Scholar 

  2. Sander LC, Wise SA. Synthesis and characterization of polymeric C18 stationary phases for liquid chromatography. Anal Chem. 1984;56:504–10.

    Article  CAS  Google Scholar 

  3. Wise SA, Sander LC. Factors affecting the reversed-phase liquid chromatographic separation of polycyclic aromatic hydrocarbon isomers. J High Res Chromatogr. 1985;8:248–55.

    Article  CAS  Google Scholar 

  4. Wise SA, Sander LC, Lapouyade R, Garrigues P. Anomalous behavior of selected methyl-substituted polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography. J Chromatogr A. 1990;514:111–22.

    Article  CAS  Google Scholar 

  5. Wise SA, Sander LC. Molecular shape recognition for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography, In: Chromatographic separations based on molecular recognition, Jinno K, ed., Wiley-VCH, New York, 1997;1–65.

  6. Engelhardt H, Nikolov M, Arangio M, Scherer M. Studies on shape selectivity of RP C18-columns. Chromatographia. 1998;48:183–9.

    Article  CAS  Google Scholar 

  7. Jinno K, Okumura C, Taniguchi M, Chen Y-L. Molecular shape recognition of polycyclic aromatic hydrocarbons with various alkyl diphenyl bonded phases in microcolumn liquid chromatography. Chromatographia. 1997;44:613–8.

    Article  CAS  Google Scholar 

  8. Saito Y, Jinno K, Pesek JJ, Chen YL, Luehr G, Archer J, et al. Molecular shape selectivity for polycyclic aromatic compounds on a core-shell octadecylsilica stationary phase at subambient column temperatures. Chromatographia. 1994;38:295–303.

    Article  CAS  Google Scholar 

  9. Kimura T, Ohta H, Wada K, Jinno K, Ueta I, Saito Y. Molecular shape selectivity for polycyclic aromatic compounds on a core-shell octadecylsilica stationary phase at subambient column temperatures. Chromatographia. 2013;76:921–7.

    Article  CAS  Google Scholar 

  10. Sander LC, Lippa KA, Wise SA. Order and disorder in alkyl stationary phases. Anal Bioanal Chem. 2005;382:646–68.

    Article  CAS  Google Scholar 

  11. Wise SA, Sander LC, Schantz MM. Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs) – a historical perspective on the 16 US EPA priority pollutant PAHs. Polycycl Aromat Comp. 2015;35:187–247.

    Article  CAS  Google Scholar 

  12. Janini GM, Johnston K, Zielinski WL. Use of a nematic liquid crystal for gas-liquid chromatographic separation of polyaromatic hydrocarbons. Anal Chem. 1975;47:670–4.

    Article  CAS  Google Scholar 

  13. Radecki A, Lamparczyk H, Kaliszan R. A relationship between the retention indices on nematic and isotropic phases and the shape of polycyclic aromatic hydrocarbons. Chromatographia. 1979;12:595–9.

    Article  CAS  Google Scholar 

  14. Sander LC, Wise SA. NIST special publication 922: polycyclic aromatic hydrocarbon structure index. Gaithersburg, MD, USA: National Institute of Standards and Technology; 1997.

    Google Scholar 

  15. Wise SA, Benner BA, Liu H, Byrd GD, Colmsjö A. Separation and identification of polycyclic aromatic hydrocarbons isomers of molecular weight 302 in complex mixtures. Anal Chem. 1988;60:630–7.

    Article  CAS  Google Scholar 

  16. Sander LC, Wise SA. Retention and selectivity for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography, In: Retention and selectivity studies in HPLC, Smith R, ed., Journal of chromatography library, Vol. 57, Elsevier Science Publishers, Amsterdam, 1995;337–369.

  17. Miller MJ, Miller JC. Statistics and chemometrics for analytical chemistry, 6th ed., Prentice-Hall Inc., New York, 2016;1–278.

  18. Wilson WB, Sander LC, de Alda ML, Lee ML, Wise SA. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;1461:120–30.

    Article  CAS  Google Scholar 

  19. Wilson WB, Sander LC, de Alda ML, Lee ML, Wise SA. Retention behavior of polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;1461:107–19.

    Article  CAS  Google Scholar 

  20. Oña-Ruales JO, Sharma AK, Wise SA. Identification and quantification of six-ring cata-condensed C26H16 polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Anal Bioanal Chem. 2015;407:9165–76.

    Article  Google Scholar 

  21. Oña-Ruales JO, Wise SA. Identification of dibenzo[c,f]tetraphene in the products of a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Polycycl Aromat Comp. (to be submitted).

  22. Wise SA, May WE. The effect of C18 surface coverage on selectivity in reversed-phase liquid chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1983;55:1479–85.

    Article  CAS  Google Scholar 

  23. Sander LC, Wise SA. Determination of column selectivity toward polycyclic aromatic hydrocarbons. J High Resolut Chromatogr. 1988;11:383–7.

    Article  CAS  Google Scholar 

  24. Yan C, Martire DE. Molecular theory of chromatographic selectivity enhancement for blocklike solutes in anisotropic stationary phases and its application. Anal Chem. 1992;64:1246–53.

    Article  CAS  Google Scholar 

  25. Yan C, Martire DE. Molecular theory of chromatography for blocklike solutes in anisotropic stationary phases and its application. J Phys Chem. 1992;96:3489–504.

    Article  CAS  Google Scholar 

  26. Lippa KA, Sander LC, Mountain RD. Molecular dynamics simulations of alkylsilane stationary-phase order and disorder. 1. Effects of surface coverage and bonding chemistry. Anal Chem. 2005;77:7852–61.

    Article  CAS  Google Scholar 

  27. Lippa KA, Sander LC, Mountain RD. Molecular dynamics simulations of alkylsilane stationary-phase order and disorder. 2. Effects of temperature and chain length. Anal Chem. 2005;77:7862–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge O. Oña-Ruales.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oña-Ruales, J.O., Sander, L.C., Wilson, W.B. et al. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) – six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da. Anal Bioanal Chem 410, 885–896 (2018). https://doi.org/10.1007/s00216-017-0456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0456-x

Keywords

Navigation